Space policy roundup – Dec.10.2018

A sampling of links to recent space policy, politics, and government (US and international) related space news and resource items that I found of interest:

Webcasts:

** The Space Show – Fri, 12/07/2018 – Dr. George Fox discussed “hardy Earth organisms survive mission sterilization, humans to Mars, Planetary Protection, the lunar environment, RNA sequencing, and more”.

** Dr. Robert Zubrin – Why a lunar base is better than LOP-G – 21st Annual Mars Society Convention

Voyager 2 reaches interstellar space

NASA’s Voyager 2 spacecraft, launched in 1977, joins Voyager 1 in leaving the Sun’s heliosphere and entering interstellar space:

NASA’s Voyager 2 Probe Enters Interstellar Space

For the second time in history, a human-made object has reached the space between the stars. NASA’s Voyager 2 probe now has exited the heliosphere – the protective bubble of particles and magnetic fields created by the Sun.

Members of NASA’s Voyager team will discuss the findings at a news conference at 11 a.m. EST (8 a.m. PST) today at the meeting of the American Geophysical Union (AGU) in Washington. The news conference will stream live on the agency’s website.

Comparing data from different instruments aboard the trailblazing spacecraft, mission scientists determined the probe crossed the outer edge of the heliosphere on Nov. 5. This boundary, called the heliopause, is where the tenuous, hot solar wind meets the cold, dense interstellar medium. Its twin, Voyager 1, crossed this boundary in 2012, but Voyager 2 carries a working instrument that will provide first-of-its-kind observations of the nature of this gateway into interstellar space.

This illustration shows the position of NASA’s Voyager 1 and Voyager 2 probes, outside of the heliosphere, a protective bubble created by the Sun that extends well past the orbit of Pluto. Credits: NASA/JPL-Caltech

Voyager 2 now is slightly more than 11 billion miles (18 billion kilometers) from Earth. Mission operators still can communicate with Voyager 2 as it enters this new phase of its journey, but information – moving at the speed of light – takes about 16.5 hours to travel from the spacecraft to Earth. By comparison, light traveling from the Sun takes about eight minutes to reach Earth.

The most compelling evidence of Voyager 2’s exit from the heliosphere came from its onboard Plasma Science Experiment (PLS), an instrument that stopped working on Voyager 1 in 1980, long before that probe crossed the heliopause. Until recently, the space surrounding Voyager 2 was filled predominantly with plasma flowing out from our Sun. This outflow, called the solar wind, creates a bubble – the heliosphere – that envelopes the planets in our solar system. The PLS uses the electrical current of the plasma to detect the speed, density, temperature, pressure and flux of the solar wind. The PLS aboard Voyager 2 observed a steep decline in the speed of the solar wind particles on Nov. 5. Since that date, the plasma instrument has observed no solar wind flow in the environment around Voyager 2, which makes mission scientists confident the probe has left the heliosphere.

“Working on Voyager makes me feel like an explorer, because everything we’re seeing is new,” said John Richardson, principal investigator for the PLS instrument and a principal research scientist at the Massachusetts Institute of Technology in Cambridge. “Even though Voyager 1 crossed the heliopause in 2012, it did so at a different place and a different time, and without the PLS data. So we’re still seeing things that no one has seen before.”

In addition to the plasma data, Voyager’s science team members have seen evidence from three other onboard instruments – the cosmic ray subsystem, the low energy charged particle instrument and the magnetometer – that is consistent with the conclusion that Voyager 2 has crossed the heliopause. Voyager’s team members are eager to continue to study the data from these other onboard instruments to get a clearer picture of the environment through which Voyager 2 is traveling.

“There is still a lot to learn about the region of interstellar space immediately beyond the heliopause,” said Ed Stone, Voyager project scientist based at Caltech in Pasadena, California. 

Together, the two Voyagers provide a detailed glimpse of how our heliosphere interacts with the constant interstellar wind flowing from beyond. Their observations complement data from NASA’s Interstellar Boundary Explorer (IBEX), a mission that is remotely sensing that boundary. NASA also is preparing an additional mission – the upcoming Interstellar Mapping and Acceleration Probe (IMAP), due to launch in 2024 – to capitalize on the Voyagers’ observations.

“Voyager has a very special place for us in our heliophysics fleet,” said Nicola Fox, director of the Heliophysics Division at NASA Headquarters. “Our studies start at the Sun and extend out to everything the solar wind touches. To have the Voyagers sending back information about the edge of the Sun’s influence gives us an unprecedented glimpse of truly uncharted territory.”

While the probes have left the heliosphere, Voyager 1 and Voyager 2 have not yet left the solar system, and won’t be leaving anytime soon. The boundary of the solar system is considered to be beyond the outer edge of the Oort Cloud, a collection of small objects that are still under the influence of the Sun’s gravity. The width of the Oort Cloud is not known precisely, but it is estimated to begin at about 1,000 astronomical units (AU) from the Sun and to extend to about 100,000 AU. One AU is the distance from the Sun to Earth. It will take about 300 years for Voyager 2 to reach the inner edge of the Oort Cloud and possibly 30,000 years to fly beyond it.

The Voyager probes are powered using heat from the decay of radioactive material, contained in a device called a radioisotope thermal generator (RTG). The power output of the RTGs diminishes by about four watts per year, which means that various parts of the Voyagers, including the cameras on both spacecraft, have been turned off over time to manage power.

“I think we’re all happy and relieved that the Voyager probes have both operated long enough to make it past this milestone,” said Suzanne Dodd, Voyager project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “This is what we’ve all been waiting for. Now we’re looking forward to what we’ll be able to learn from having both probes outside the heliopause.”

Voyager 2 launched in 1977, 16 days before Voyager 1, and both have traveled well beyond their original destinations. The spacecraft were built to last five years and conduct close-up studies of Jupiter and Saturn. However, as the mission continued, additional flybys of the two outermost giant planets, Uranus and Neptune, proved possible. As the spacecraft flew across the solar system, remote-control reprogramming was used to endow the Voyagers with greater capabilities than they possessed when they left Earth. Their two-planet mission became a four-planet mission. Their five-year lifespans have stretched to 41 years, making Voyager 2 NASA’s longest running mission.

The Voyager story has impacted not only generations of current and future scientists and engineers, but also Earth’s culture, including film, art and music. Each spacecraft carries a Golden Record of Earth sounds, pictures and messages. Since the spacecraft could last billions of years, these circular time capsules could one day be the only traces of human civilization.

Voyager’s mission controllers communicate with the probes using NASA’s Deep Space Network (DSN), a global system for communicating with interplanetary spacecraft. The DSN consists of three clusters of antennas in Goldstone, California; Madrid, Spain; and Canberra, Australia.

The Voyager Interstellar Mission is a part of NASA’s Heliophysics System Observatory, sponsored by the Heliophysics Division of NASA’s Science Mission Directorate in Washington. JPL built and operates the twin Voyager spacecraft. NASA’s DSN, managed by JPL, is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. The network also supports selected Earth-orbiting missions. The Commonwealth Scientific and Industrial Research Organisation, Australia’s national science agency, operates both the Canberra Deep Space Communication Complex, part of the DSN, and the Parkes Observatory, which NASA has been using to downlink data from Voyager 2 since Nov. 8.

For more information about the Voyager mission, visit: https://www.nasa.gov/voyager

More information about NASA’s Heliophysics missions is available online at: https://www.nasa.gov/sunearth

OSIRIS-REx begins exploration of asteroid Bennu

NASA’s science probe OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) arrived at the asteroid Bennu last week. After a few weeks of reconnaissance of the small object, the spacecraft will move in close enough to go into orbit around it. NASA’s OSIRIS-REx Spacecraft Arrives at Asteroid Bennu – NASA

Now, at about 11.8 miles (19 kilometers) from Bennu’s Sun-facing surface, OSIRIS-REx will begin a preliminary survey of the asteroid. The spacecraft will commence flyovers of Bennu’s north pole, equatorial region, and south pole, getting as close as nearly 4 miles (7 kilometers) above Bennu during each flyover.

The primary science goals of this survey are to refine estimates of Bennu’s mass and spin rate, and to generate a more precise model of its shape. The data will help determine potential sites for later sample collection.

OSIRIS-REx’s mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. Asteroids are remnants of the building blocks that formed the planets and enabled life. Those like Bennu contain natural resources, such as water, organics and metals. Future space exploration and economic development may rely on asteroids for these materials.


This image of Bennu was taken by the OSIRIS-REx spacecraft from a distance of around 50 miles (80 km).  Credits: NASA/Goddard/University of Arizona

After a couple of years of study, the spacecraft will obtain a sample of the asteroid and return it to earth: 

When OSIRIS-REx begins to orbit Bennu at the end of this month, it will come close to approximately three quarters of a mile (1.25 kilometers) to its surface. In February 2019, the spacecraft begins efforts to globally map Bennu to determine the best site for sample collection. After the collection site is selected, the spacecraft will briefly touch the surface of Bennu to retrieve a sample. OSIRIS-REx is scheduled to return the sample to Earth in September 2023.

====

Chasing New Horizons: Inside the Epic First Mission to Pluto

China heads for the Moon’s far side, NASA listens to Martian winds, and a Dragon arrives at the ISS

Lots of activity in space this weekend:

** Moon: China launched on Friday the Chang’e-4 mission to the far side of the Moon. The 3,780 kg package includes a lander (1,200 kg), a rover (140 kg). This will be the first mission of any kind to the surface of the side of the Moon that never faces Earth due to tidal locking. A lunar orbiter was launched earlier to serve as a communications relay. The landing date has not been announced yet.

Chang’e 4 Rover on the Moon (Image: CNSA)

** Mars: Insight is busy setting up its experiments and listening to the Martian wind.

This image from InSight’s robotic-arm mounted Instrument Deployment Camera shows the instruments on the spacecraft’s deck, with the Martian surface of Elysium Planitia in the background. The image was received on Dec. 4, 2018 (Sol 8). Credits: NASA/JPL-Caltech Full image and caption

** Earth Orbit: The SpaceX Dragon, launched on a Falcon 9 from Cape Canaveral last Wednesday, rendezvoused and berthed to the ISS this morning. It joins five other spaceships attached to the station including Northrop Grumman’s Cygnus cargo vehicle, two Russian Progress cargo vehicles, and two Russian Soyuz crew vehicles.

Dec. 8, 2018: International Space Station Configuration. Six spaceships are attached at the space station including the U.S. resuppy ships Northrop Grumman Cygnus and the SpaceX Dragon; and Russia’s Progress 70 and Progress 71 resupply ships and the Soyuz MS-09 and MS-10 crew ships all from Roscosmos.

====

Check out the Best Selling Electronics at Amazon

Videos: “Space to Ground” report on ISS – Dec.7.2018

Here is this week’s episode of NASA’s Space to Ground report on activities related to the  International Space Station:

This video describes an experiment launched to the ISS on the SpaceX Dragon that will test in-space refueling technologies:

The Dragon is currently catching up with the ISS in time to berth with the station early Saturday morning US time. NASA TV will webcast the rendezvous and attachment:

Updates on the ISS and the Dragon arrival can be found at Space Station – Off The Earth, For The Earth – NASA ISS blog.

More about the research payloads on the Dragon: NASA Sends New Research, Hardware to Space Station on SpaceX Mission | NASA

====

Chasing New Horizons: Inside the Epic First Mission to Pluto

 

Everyone can participate in space