The latest report from ESO (European Southern Observatory:
First Signs of Weird Quantum Property of Empty Space?
VLT observations of neutron star may confirm
80-year-old prediction about the vacuum
By studying the light emitted from an extraordinarily dense and strongly magnetised neutron star using ESO’s Very Large Telescope, astronomers may have found the first observational indications of a strange quantum effect, first predicted in the 1930s. The polarisation of the observed light suggests that the empty space around the neutron star is subject to a quantum effect known as vacuum birefringence.
Despite being amongst the closest neutron stars, its extreme dimness meant the astronomers could only observe the star with visible light using the FORS2 instrument on the VLT, at the limits of current telescope technology.
This artist’s view shows how the light coming from the surface of a strongly magnetic neutron star (left) becomes linearly polarised as it travels through the vacuum of space close to the star on its way to the observer on Earth (right). The polarisation of the observed light in the extremely strong magnetic field suggests that the empty space around the neutron star is subject to a quantum effect known as vacuum birefringence, a prediction of quantum electrodynamics (QED). This effect was predicted in the 1930s but has not been observed before.
The magnetic and electric field directions of the light rays are shown by the red and blue lines. Model simulations by Roberto Taverna (University of Padua, Italy) and Denis Gonzalez Caniulef (UCL/MSSL, UK) show how these align along a preferred direction as the light passes through the region around the neutron star. As they become aligned the light becomes polarised, and this polarisation can be detected by sensitive instruments on Earth. Credit: ESO/L. Calçada
Neutron stars are the very dense remnant cores of massive stars — at least 10 times more massive than our Sun — that have exploded as supernovae at the ends of their lives. They also have extreme magnetic fields, billions of times stronger than that of the Sun, that permeate their outer surface and surroundings.
Mignani explains:
“According to QED, a highly magnetised vacuum behaves as a prism for the propagation of light, an effect known as vacuum birefringence.”
Among the many predictions of QED, however, vacuum birefringence so far lacked a direct experimental demonstration. Attempts to detect it in the laboratory have not yet succeeded in the 80 years since it was predicted in a paper by Werner Heisenberg (of uncertainty principle fame) and Hans Heinrich Euler.
“This effect can be detected only in the presence of enormously strong magnetic fields, such as those around neutron stars. This shows, once more, that neutron stars are invaluable laboratories in which to study the fundamental laws of nature.”
says Roberto Turolla (University of Padua, Italy).
“This is the faintest object for which polarisation has ever been measured. It required one of the largest and most efficient telescopes in the world, the VLT, and accurate data analysis techniques to enhance the signal from such a faint star.”
[- Vincenzo Testa (INAF, Rome, Italy) comments.]
“The high linear polarisation that we measured with the VLT can’t be easily explained by our models unless the vacuum birefringence effects predicted by QED are included,”
adds Mignani.
“This VLT study is the very first observational support for predictions of these kinds of QED effects arising in extremely strong magnetic fields,”
remarks Silvia Zane (UCL/MSSL, UK).
Mignani is excited about further improvements to this area of study that could come about with more advanced telescopes:
“Polarisation measurements with the next generation of telescopes, such as ESO’s European Extremely Large Telescope, could play a crucial role in testing QED predictions of vacuum birefringence effects around many more neutron stars.”
[Adds Kinwah Wu (UCL/MSSL, UK): ]
“This measurement, made for the first time now in visible light, also paves the way to similar measurements to be carried out at X-ray wavelengths,”
This video sequence takes us from a broad view of the spectacular central regions of the Milky Way deep into the small constellation of Corona Australis. Here, as well as seeing clouds of glowing gas and dark regions of dust, we find the very faint neutron star RX J1856.5-3754. This extremely dense and magnetic object is the first place that indications of a strange quantum effect called vacuum birefringence may have been detected in new observations made using ESO’s Very Large Telescope. Credit: ESO/N. Risinger (skysurvey.org)/Digitized Sky Survey 2
Notes
[1] This object is part of the group of neutron stars known as the Magnificent Seven. They are known as isolated neutron stars (INS), which have no stellar companions, do not emit radio waves (like pulsars), and are not surrounded by progenitor supernova material.
[2] There are other processes that can polarise starlight as it travels through space. The team carefully reviewed other possibilities — for example polarisation created by scattering off dust grains — but consider it unlikely that they produced the polarisation signal observed.