Category Archives: Amateur/Student Satellite

Student and amateur CubeSat news roundup – Oct.12.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** University of Hawaiʻi student-built Neutron-1 CubeSat reaches the  International Space Station (ISS): UH satellite to collect neutrons in space – University of Hawaiʻi System News

Diagram of the Neutron-1 CubeSat. Credits: Hawaii Space Flight Laboratory (HSFL)

A Northrop Grumman Cygnus cargo vessel berthed to the ISS on October 5th after launching on a Antares rocket from Wallops Island on October 2nd. The Cygnus NG-14 mission carried roughly four tons of cargo, including Neutron-1 and several other smallsats for deployment into orbit from the station. Neutron-1 holds instruments to measure neutrons in space, particularly those coming from the Sun.

Through the 2015 RockSat-X mission, Kauaʻi Community CollegeWindward Community CollegeHonolulu Community College and Kapiʻolani Community College were also involved with the development of this mission. The Project IMUA community college collaboration led to the development of a functioning neutron detector, however it was lost during a suborbital test launch from Wallops Flight Facility. This set back the project until Arizona State University (ASU) became a collaborator on this mission by providing the neutron detector in 2018.

“Neutron-1 is a 3U CubeSat [small satellite],” said Amber Imai-Hong, an avionics engineer at HSFL and ground station coordinator for the Neutron-1 mission. “It’s approximately the size of a loaf of bread and the data gathered by the satellite will be used to understand the relationship between the Earth and the Sun by mapping neutrons in the low-earth orbit.”

Neutron-1 is launching on a rideshare mission, which includes other satellites, and will be in space for approximately one year. UH delivered the small satellite to NanoRacks, LLC in Houston, Texas on August 20.

** CSFU students developing a satellite to study wildfires: Students Fired Up to Develop Miniature Satellite to Fight Wildfires – Cal State Fullerton Univ. A group of undergraduates at Cal State Fullerton

are designing, manufacturing and building a cube-shaped, miniaturized satellite, known as a CubeSat, to observe Earth from space to predict and detect fires. The data captured is used to detect areas of risk — to put out fires before a blaze even starts.

“This year’s fire season has been particularly harmful. With the onset of climate change, we need to utilize tools such as satellites to study Earth and try to predict and prevent natural disasters,” said senior Patrick Babb, a mechanical engineering major who is leading the team project.

The 10-member student team is developing a prototype, dubbed “TitanSat,” which incorporates infrared cameras and solar power to monitor Earth’s climate and detect hot and dry zones that pose a wildfire risk. 

** Updates on the UAE MeznSat CubeSat recently launched in to orbit on a Russian Soyuz 2.1b rocket along with 18 other smallsats. (See previous posts here, here, here, and here.)

** AMSAT news on student and amateur CubeSat/smallsat projects:

ANS-271 AMSAT News Service Special Bulletin – September 27, 2020

  • 2020 Virtual AMSAT Space Symposium and Annual General Meeting [See also AMSAT 2020 Virtual Symposium schedule announced – Southgate Amateur Radio News]
  • Reminder: Current AMSAT Journal is available on Member Portal
  • AMSAT-DL Online Symposium
  • AMSAT-UK Convention
  • ARRL LOTW new user guide
  • AMSAT Field Day Results for 2020 have been posted
  • ARISS News
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over

ANS-278 AMSAT News Service Weekly Bulletin – October 4, 2020

  • Virtual AMSAT Space Symposium and Annual General Meeting – October 17
  • AMSAT-UK Colloquium Online – October 11
  • ARISS Worldwide SSTV Event – October 4-8
  • Happy 27th Birthday, AMRAD-OSCAR 27
  • FCC Deletes 3.4 GHz Amateur Satellite Service Allocation
  • Chinese Amateur Radio Satellite Launches Delayed
  • VUCC Awards-Endorsements for October 2020
  • Message to US Educators: ARISS Contact Opportunity – Call For Proposals
  • Changes to AMSAT TLE Distribution for October 1, 2020
  • Hamfests, Conventions, Maker Faires, and Other Events
  • AMSAT Awards News
  • Upcoming Satellite Operations
  • Satellite Shorts from All Over

ANS-285 – AMSAT News Service Weekly Bulletin – October 11, 2020

  • AMSAT 2020 Virtual Symposium Schedule Announced
  • UH Satellite Successfully Blasts into Space
  • ARISS to Celebrate 20 Years of Ham Radio on the ISS
  • IARU Region 2 Releases 2020 Band Plan Revision
  • Two More Astronauts Earn Amateur Radio Licenses
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • ARISS News
  • Satellite Shorts from All Over

General CubeSat/SmallSat info:

** SEDS-Canada x Canadian CubeSat Project PanelSEDS-Canada

** BWSI Build A CubeSat Final PresentationsMIT Beaver Works Summer Institute

Caution: portions of the audio are difficult to hear
Build a CubeSat – Sierra Nevada Corp. Project Beaver Works Summer Institute will offer students the opportunity to design, build, and test a prototype CubeSat. Students will explore all the major subsystems of a satellite and get hands on experience with mechanical, electrical, and software engineering. The class will use these new skills to demonstrate a real CubeSat science mission in partnership with scientists from Woods Hole Oceanographic Institution.
– Introduction by Jack Fox
– Presentations
Astrobeever
Buzz Lightyear
Team Oddsat
BYJ Cube
Rubble Space Telescope
– Q&A

** 84- Microsoft Azure Orbital, Ground Station as a Service, and Dynamic GroundConstellations Podcast

On this Constellations podcast, the focus will be on Microsoft’s recent announcement of their Ground Station as a Service (GSaaS) offering “Azure Orbital” and what it means for the satellite industry. Azure Orbital is Microsoft’s managed service that is designed to deal with the growing flood of data for Earth Observation and Internet of Things applications. The managed service lets users communicate to, control their satellite, process data and scale operations directly in Microsoft Azure. Microsoft’s GSaaS takes a very different approach compared to traditional ground systems. Azure Orbital leverages key technologies such as virtualization, Software-Defined Networking (SDN), and cloud computing to enable customers to automate and scale operations across the globe. On this podcast Nora Zhan, Product Manager for Microsoft discusses Azure Orbital. She is involved in Azure Space, Satellites and Ground Stations and in bringing this new platform to market to provide satellite connectivity.

** The Open Source Satellite ProgrammeBritish Computer Society Open Source Specialists

Presented by Paul Madle Over the last 25 years, the UK has brought positive disruptions to the space industry. The University of Surrey innovated small spacecraft: leveraging Commercial-Off-The-Shelf components that could compete with larger more traditionally designed spacecraft. In the last 7 years, Scottish CubeSats (very small satellites) have grown from academic projects into commercially viable products performing earth observation and other applications. Both of these innovations have brought down costs and made space more accessible to greater numbers of people. KIPSE Space Systems aspires to be a catalyst for the next step-change to the industry by collaboratively designing a new, capable spacecraft platform that is open source, all design being freely accessible through the internet.

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

Student and amateur CubeSat news roundup – Sept.24.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** Western University (Canada) and Arizona State teams to collaborate on CubeSat project:

[On Sept. 23rd] …Western signed a game-changing memorandum of understanding (MoU) with the MILO Institute, a non-profit research collaboration led by Arizona State University and supported by Lockheed Martin and its subsidiary GEOshare.

As part of the agreement, [Electrical and computer engineering professor Jayshri] Sabarinathan and her Western Space collaborators will contribute a one-unit CubeSat (a square-shaped miniature satellite roughly the size of a Rubik’s cube) to a MILO Institute and University of Texas at El Paso flight mission planned for June 2021 – an aggressive timeline, she admits, but that just adds to the excitement.

The project will contribute to development of technology for lunar and other deep space exploration.

Sabarinathan is also leading the Western Institute of Earth & Space Exploration team in another CubeSat project:

For the past two years, Sabarinathan and her team have been designing, developing and constructing a CubeSat with research partners at Nunavut Arctic College and Canadensys Aerospace Corporation, scheduled for launch in 2022. Ukpik-1, a two-unit CubeSat project outfitted with 360-degree imaging VR cameras and funded by the Canadian Space Agency, will fly to the International Space Station in two years. Next summer’s ‘bonus’ launch provides the team with an unexpected – but most-opportune – test run for its endeavour.

** Imperial College group delivers miniature magnetometer instrument for ESA RadCube mission to study the solar wind: Imperial completes new space mission instrument despite lockdown challenges – Imperial College London

The RadCube mission is designed to test new technologies for monitoring space weather – the variations in the solar wind coming from the Sun, which can disrupt and damage satellites and infrastructure on Earth.

RadCube is a ‘cubesat’ mission, which are designed to use smaller, cheaper and lower-power components than traditional space missions. The technologies in RadCube, if proven to work well in space, could be used in a range of future missions, such as constellations of multiple cubesats working together to measure the solar wind. CubeSat spacecraft are typically constructed upon multiples of 10 × 10 × 10 cm cubes, and RadCube is made up of three of these base units.

Imperial academics and technicians from the Department of Physics this week delivered a miniature magnetometer to the project in Hungary – an instrument that measures the interactions between the Earth’s magnetic field and that carried by the solar wind, which is a major component of space weather monitoring.

Rendering of the RadCube satellite. The MAGIC instrument sits on the end of the boom at the bottom. Credits: Imperial College

The individual detectors on their instrument – called MAGIC (MAGnetometer from Imperial College) – are less than a millimetre in size, and the total instrument sensor is only four centimetres cubed. This is in comparison to the sophisticated magnetometers the lab builds for large and expensive space missions, such as the recent Solar Orbiter mission and the upcoming JUICE mission, which are much larger and weigh a couple of kilograms.

The MAGIC instrument also uses less than a watt of power, compared to up to 20 watts for the larger instruments. While MAGIC is not as sensitive as these larger instruments, as it is much cheaper to build and uses far less power, the technology could be carried on several spacecraft working in tandem. In this way, the lower-quality data is compensated by a much larger volume of data.

The MAGIC (MAGnetometer from Imperial College) for the RadCube spacecraft. Credits: Imperial College

** Update on the UAE MeznSat student satellite: Mini satellite developed by UAE students to launch this month – The National

A miniature satellite developed by university students in the UAE to observe the country’s climate will launch later this month.

MeznSat was funded by the UAE Space Agency and built by engineering and science students at the Khalifa University and American University of Ras Al Khaimah (Aurak).

MeznSat’s initial lift-off was scheduled for the end of 2019, however it was delayed twice and will now blast into the skies on a Soyuz-2b rocket from Russia on September 28.

It is the third miniature satellite – known as a CubeSat – constructed in the Emirates.

See previous postings about the MeznSat project here, here, and here.

** AMSAT news on student and amateur CubeSat/smallsat projects:

ANS-257 AMSAT News Service Special Bulletin

  • Virtual 2020 AMSAT Space Symposium and Annual General Meeting on October 17, 2020
  • AMSAT Virtual Symposium Call for Papers
  • Preparations Continue for World Radiocommunication Conference 2023
  • Changes to AMSAT-NA TLE Distribution for September 10, 2020
  • AMSAT-DL Announces Virtual Satellite Symposium September 26, 2020
  • AMSAT-UK Announces Colloquium 2020 October 11, 2020
  • Upcoming Satellite Operations
  • ARISS News
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts from All Over

ANS-264 AMSAT News Service Special Bulletin

  • AMSAT Board of Directors Elections Results
  • July/August AMSAT Journal Is Now Available
  • RAC Canada 2020 Conference and AGM is this Sunday
  • AO-7 Approaching Return To Full Illumination
  • Changes to AMSAT-NA TLE Distribution
  • Ham Radio Club Talk Collection On YouTube
  • ARISS News
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over

General CubeSat/SmallSat info:

** Sierra Foothills ARC August 2020: Cubesats! The story of the ASU Phoenix Cubesat project

The Sierra Foothills ARC was privileged to have Devon KM6MDG and Trevor KM6MDH talk about their work on the Phoenix Cubesat, AzTechSat-1. The two are graduate students at Arizona State University, and were involved with the program from shortly after conception, through deployment from the International Space Station, to operation afterward. In their talk, they review the objectives of the satellite, talk about its construction and their roles and challenges, and detail its current status.

** Welcome to the Space and Satellite Systems Club [at UC Davis]

The Space and Satellite Systems Club at UC Davis is the premiere space-based engineering club on campus. Our efforts are focused towards developing the skills and technical know-how necessary to design spacecraft by developing, manufacturing, and launching a CubeSat mission to Low-Earth Orbit (LEO). The club focuses on technologies for smaller spacecraft and cube satellites and covers a wide range of research areas from controls and dynamics to sensors, electronics and software. We are currently set to launch our first CubeSat (REALOP) later in 2021. This mission will be a technical demonstration of our in-house developed bus and technological components, the payload on the will serve as an earth sciences mission that will utilize IR and RGB cameras to study the thermal activity of the Earth’s atmosphere from LEO.

** The MILO Space Science Institute: Enabling New, Science-Focused Deep Space Smallsat MissionsThe Global Virtual Workshop I – Stardust-R

** ISS International Space Station Cross Band FM RepeaterTech Minds

Here we take a look at the brand new FM Repeater on board the International Space Station, launched on the 2nd September 2020.

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

Student and amateur CubeSat news roundup – Sept.9.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** USC student team comes out on top in AIAA smallsat competition: USC Wins First Place in the AIAA Small Satellite Student Competition – USC Viterbi School of Engineering

A team of students from the USC Laboratory for Exploration and Astronautical Physics (LEAP), including Robert Antypas and Jeffrey Asher, doctoral students in the Viterbi Department of Astronautical Engineering. The students are working to optimize the design of ionic electrospray thrusters, in-space propulsion devices, in collaboration with the Air Force Research Laboratory (AFRL). These thrusters are small, light and powerful, easy to construct and customizable. These unique aspects contributed to the team winning first place in the AIAA Small Satellite Poster Competition. The students were supervised by Joseph Wang, professor of astronautics and aerospace and mechanical engineering at the USC Viterbi School of Engineering.

Said Asher: “Unlike traditional electric or chemical propulsion technologies, these thrusters are able to scale linearly with the area by increasing the number of emission sites.” In other words, you can increase the level of thrust outputted by increasing the number of emitter tips on the device, a feature not currently possible on other types of propulsion technologies.

Major components of the USC electrospray testbed thruster. Image Credits: Jeffrey Asher.

“The ionic electrospray thruster the team created is an electrostatic propulsion device that operates by extracting and accelerating ions from the propellant using an electric field. The ion extraction is aided by the thruster’s use of a novel liquid propellant, called an ionic liquid. This liquid is highly conductive and freely “gives up” its charge when exposed to an electric field. It also has extremely low vapor pressure, so that it can withstand being directly exposed to the vacuum conditions of space without evaporating.” – USC

** AMSAT news on student and amateur CubeSat/smallsat projects:

ANS-243 AMSAT News Service Special Bulletin

  • AMSAT Member David Minster, NA2AA, Elected ARRL CEO
  • Jeanette Epps, KF5QNU, Joins Starliner Mission To ISS
  • ANS Editors Wanted
  • CubeSat Challenge Seeks To Inspire, Prepare Students
  • Amateur License Fee Proposal From FCC
  • AO-92 (FOX-1D) Reverting to Safe Mode
  • GRBAlpha Frequency Coordination Completed
  • ARISS News
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over

ANS-250 AMSAT News Service Special Bulletin

  • ARISS First Element of the Interoperable Radio System is Operational
  • FCC Notice of Proposed Rulemaking: Proposal open for comment
  • Successful Vega Mission Launches the Amicalsat Project Satellite
  • TEVEL Mission Nears Projected Launch Date
  • Changes to the AMSAT-NA TLE Distribution for September 3, 2020
  • VUCC Satellite Awards and Endorsements
  • ARISS News
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over

General CubeSat/SmallSat info:

** Autonomous deep-space CubeSat: where we are and where we are going – GVWI (The Global Virtual Workshop I – Stardust-R)

** Educational webinars – Session A – Build a Cubesat from scratchSatRevolution

SatRevolution is happy to invite you to a series of informational sessions (only 30 minutes long!), organized by our team and the team of our partners. This webinars has been recorded during Small Sat Conference 2020 this is way session is different in title and during webinars record. For more infromation please visit our website: https://satrevolution.com/

** Ask NMD Episode 1 – Guest, Prof. Jordi Puig-SuariNanosatellite Missions Design

Prof Jordi Puig-Suari is a professor and an aerospace technology developer. He is the co-inventor of the CubeSat standard, and co-founder of Tyvak Nano-Satellite Systems. Prof. Jordi answered 2 questions from the many questions you asked us. The questions were “How did Cubesats begin” and “What is the relationship and collaboration between robotics, AI, software and space exploration”.

** SmallSat Mesh Networking – SmallSat 2020 Webinar – TethersUnlimited – YouTube

** Leveraging the Success of the CubeSat Standard to Create a SmallSat Standard for ESPA SpacecraftEnrico Congiu – YouTube

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

Student and amateur CubeSat news roundup – Aug.25.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** University of Cádiz (UCA) student team developing the UCAnFly cubesat to test space-based gravitational wave detection technologies.

UCAnFly is an educational nanosatellite to test emerging technologies for space-based gravitational wave detectors, such as LISA. The main motivation is to complement academic education at the University of Cádiz (UCA) and transfer knowledge to students in the field of advanced instrumentation and data analysis for Space Sciences. 

The emerging line of research that the UCAnFly project has recently started to conduct at UCA requires engaging and training young researchers with the purpose of creating a group specialized in high precision measurement systems for space missions. This project will open a unique opportunity of novel and valuable experience for the students involved.

UCAnFly is led by a multidisciplinary team at the University of Cádiz, with the support of the Education Office of the European Space Agency, under the educational Fly Your Satellite! programme.

Rendering of the design of the UCAnFly cubesat. Credits: UCA

A video overview:

…The UCAnFly project involves the introduction of a new line of research at the University of Cádiz, which requires engaging and training young researchers with the aim of creating a group specialized in high precision measurement systems for space missions. For this reason, in addition to the mission objectives, one of the main motivations of the project is to complement academic education and transfer knowledge in the field of advanced instrumentation and data analysis for space applications to undergraduate and doctoral students…

** Virginia high school team building TJ REVERB cubesat to compare smallsat radio communications systems. The project won a ride to space via NASA’s CubeSat Launch Initiative.

The TJ REVERB project is creating a best practice document for building a Nanosatellite while building a 2U CubeSat that compares multiple radio systems in Lower Earth Orbit. Additionally, TJ REVERB serves as an educational vehicle for teaching students the principles of systems engineering. Beyond the rich learning experience designing and constructing a satellite provides the students at Thomas Jefferson HSST, the team is committed to a robust local, national, and international outreach program.

There is a GoFundMe to raise funds to expand the smallsat program and their outreach activities to other high schools: Fundraiser for US STEM FOUNDATION by TJ REVERB : TJREVERB Cubesat for TJHSST

Latest updates at Cool Cube (@CoolCube10) / Twitter. Find videos posted by the students at Cool Cube – YouTube, e.g.

** AMSAT news on student and amateur CubeSat/smallsat projects: ANS-236 AMSAT News Service Special Bulletin

  • Ballot Return Date is September 15
  • Two-Minute Engineering Video Update Available
  • New Distance Records
  • ORI’s Digital Microwave Broadband Communication System Determined to be Free of ITAR
  • SmallSat 2020 Virtual Conference Proceedings Available Online
  • Upcoming Satellite Operations
  • ARISS News
  • Satellite Shorts from All Over

General CubeSat/SmallSat info:

** Students Use Ham Radio to Call an Astronaut in Space – NASA Johnson

On May 15, 2020, Canadian students used ham radio to talk with NASA astronaut Chris Cassidy, currently aboard the International Space Station. Thanks to ham radio operators and the International Space Station program, the students were able to participate from their homes. Learn more about ham radio aboard the space station: https://go.nasa.gov/2DRPAeK Learn more about the research being conducted on station: https://www.nasa.gov/iss-science

** What is a CubeSat?Cool Cube

CubeSats are driving space exploration! In this video, by students for students, we go over what they are and some major components that are typically on board! Please stick along for the rest of this series, where we’ll go over the ins and outs of satellite development!

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

Student and amateur CubeSat news roundup – Aug.19.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** US Dept. of Education opens CubeSat mission competition for high school students: U.S. Department of Education Launches Space Mission Challenge for High School Students: CTE Mission: CubeSat Challenge seeks to inspire, prepare students for a future in aerospace | U.S. Department of Education

Building on the Administration-wide commitment to expand student interest in the booming science, technology, engineering and math (STEM) fields, the U.S. Department of Education today launched CTE Mission: CubeSat, a national challenge to inspire students to build technical skills for careers in space and beyond. High school students from across the country are invited to design and build CubeSat (cube satellite) prototypes, or satellites that aid in space research, bringing space missions out of the clouds and into the classroom.

“This is such an exciting way to rethink education and get students engaged in hands-on learning in the growing aerospace and technology fields,” said U.S. Secretary of Education Betsy DeVos. “I look forward to seeing the innovative prototypes students develop and hope this challenge inspires our next generation of American space explorers.”

Investors predict that space will be the next trillion-dollar industry, and as missions in space continue to expand, so do the career opportunities. This multi-phase challenge offers high school students across the United States the chance to build CubeSat prototypes while learning creative, collaborative, and technical skills for 21st century careers.

Schools interested in entering CTE Mission: CubeSat should form a team and submit a mission proposal by 5:59 p.m. ET, on Oct. 16, 2020 — no in-person collaboration or prior experience with CubeSats is required. The online submission form asks for school information, a team profile, a project proposal, and anticipated learning outcomes. Curated educational resources are available to students and teachers online in the CTE Mission: CubeSat resource hub. To learn more, schools can join a virtual information session on Sept. 1.

Up to five finalists will be selected to receive prizes and participate in Phase 2, which runs from January to May 2021. Finalists will have access to expert mentorship and additional virtual resources as they build CubeSat prototypes and plan flight events to launch their prototypes. The Department understands that due to current conditions, schools will need flexibility to safely collaborate when designing and building prototypes during the challenge. The Department looks forward to the creative solutions in the mission proposals it receives as challenge entries.

Each finalist will receive an equal share of the $25,000 cash prize pool, as well as satellite development, hardware, and software kits. Challenge sponsors include Arduino, Blue Origin, Chevron, EnduroSat, LEGO Education, Magnitude.io, MIT Media Lab, and XinaBox.

Find more about the competition at the CTE Mission: CubeSat blog. See, for example, Small yet mighty: CubeSats are transforming the future of space discovery — and education – CTE Mission: CubeSat

Diagram of the primary components of a CubeSat.

** Norwegian university team building HYPSO-1 CubeSat to study ocean algae blooms.The NTNU SmallSat Lab at the Norwegian University of Science & Technology is developing a miniature hyper-spectral camera system for the mission. The 6U CubeSat is to be launched later this year.

The HYPer-Spectral smallsat for Ocean observation (HYPSO) will observe oceanographic phenomena via a small satellite with a hyperspectral camera, intelligent on-board processing and robots

Why?

The Ocean is of great interest to understand the effects of climate change and human impact on the world.

Traditional EO satellites are very expensive and take several years to develop and launch.

Dedicated SmallSats can be used to provide images of small areas of interest with short revisit times.

The information can be downloaded, and communicated to unmanned vehicles which can investigate the areas of interest further.

The Norwegian company KSAT ( Kongsberg  Satellite Services ) will provide ground support for the mission: KSAT will support Norway’s first hyperspectral Smallsat mission – KSAT

At NTNU Small Satellite Lab, a multi-disciplinary team of master students, PhD-students and professors are currently working on a small satellite with a miniaturized hyperspectral camera for detection of toxic algae blooms along the Norwegian coast. KSAT will as part of this contract, provide commercial ground station services from the Svalbard Ground Station for this mission, called HYPSO-1. KSAT is well known for providing fast and reliable space to ground services. By using the unique ground station at Svalbard, KSAT ensures fast access to the time-critical data.

In combination with drones and autonomous vehicles both on surface and subsea, the goal is to be able to detect and alert the fish-farms about toxic algae blooms in the area. In 2019 a sudden upwelling of toxic algae killed close to 8 million salmon in Norwegian fish farms, wiping out more than half of the annual sales growth in just over a week. The hope is that with the contribution of this mission, one can avoid this in the future.

As a significant provider of maritime monitoring services KSAT had an active role during the algae bloom last year and together with partners in Tromsø they are currently exploring how to discriminate between different types of algae by combining different sensors and applying advanced algorithms.

** The Orbit student smallsat group at NTNU is developing SelfieSat as their first mission.

The SelfieSat, our first project, started out as a simple satellite project; we wanted to make an operational satellite that is able to communicate while it is orbiting earth. However, we wanted to make things a bit more interesting. While SelfieSat is in orbit it will be able to display a selfie of any person on earth, which will be uploaded from our ground station at NTNU. A robotic arm with a camera attached will photograph the screen with the earth in its background. Finally this picture will be sent back to the selfie-taking individual!

A rendering of the SelfieSat CubeSat in development by the Orbit student group at NTNU.

Launch is targeted for the 2020/2021 time frame.

** Univ. of Georgia‘s Small Satellite Research Laboratory (SSRL) building 2 CubeSats for ocean studies: Smallsat Lab @ University of Georgia Building Two For Orbit – SatNews

The primary scientific goals of these cubesat missions are to develop and operate the first moderate resolution coastal ecosystem and ocean color CubeSats in Georgia.

The AFRL mission, the Mapping and Ocean Color Imager (MOCI) will use an onboard RGB camera to take images from multiple perspectives to create a 3D point cloud of land features.

The NASA mission, the SPectral and Ocean Color Satellite (SPOC Sat), will generate hyperspectral moderate resolution imaging products to monitor coastal wetlands status, estuarine water quality, and near-coastal ocean productivity in compliance with some of the NASA’s strategic objectives. The designing and building of the hyperspectral imager for SPOC is being done in house and will have 60 bands to acquire image data between 400 and 850 nm. In addition, the SPOC mission has been chosen as a candidate of NASA’s eight CubeSat Launch Initiative, meaning that SPOC will be launched to the International Space Station for deployment between 2018 and 2020.

Undergraduate students are deeply involved in the two projects:

The two missions and the establishment of the lab have the primary goals of teaching and developing students for STEM careers by training undergraduates in a broad range of fields through hands-on, experiential learning and creating a pipeline for high school students to attend UGA through the Physics and Astronomy Department. While the majority of members in the lab are undergraduates, there are graduate students that serve as mentors. The team currently consists of 45 students from around campus.

Checkout the SSRL poster (pdf) created for the recent Smallsat 2020 conference.

** AMSAT news on student and amateur CubeSat/smallsat projects: ANS-229 AMSAT News Service Special Bulletin

  • Two-Minute Engineering Video Update Available [See the video below]
  • CubeSat.org Announced CubeSat Design Specification Rev.14
  • US Department of Defense to Share 3450 – 3550 MHz with 5G Commercial Operations
  • QSO Today Virtual Expo Satellite Presentations Still Available
  • Chinese Mars probe Tianwen-1 successfully received by AMSAT-DL
  • SmallSat 2020 Virtual Conference Proceedings Available Online
  • Upcoming Satellite Operations
  • ARISS News
  • Satellite Shorts from All Over

General CubeSat/SmallSat info:

** AMSAT Engineering Two Minute Update

A light-hearted presentation of the latest status update from AMSAT Engineering.

** Bhutan-1 CubeSat. Bhutan’s first satellite

** SmallSat 2020- Achieving compact and effective thermal solutions for small satellitesAdvanced Cooling Technologies Inc. – YouTube

ACT’s Bryan Muzyka hosts a side meeting for Small Satellite 2020 in a virtual platform. He walks through some of options available for small satellite thermal control. Q&A finishes up the presentation with questions related to CTE mismatch, custom tubing for 3U cards, electric propulsion systems and if heat pipes are suitable for RF environments.

** Hypergiant Galactic Systems SEOPs: Affordable Access to Low Earth OrbitGalactic – Hypergiant

With the advent of mobile phones and mass-produced miniaturized electrical components, satellite construction has become much more affordable. Hypergiant Galactic Systems SEOPs has built a foundation to provide access to space utilizing the International Space Station infrastructure with two launch systems servicing the CubeSat and MicroSat markets. The organization has also built several launch vehicle agnostic products such as dispensers and separation systems with five successful missions.

** The Space Show – Fri. Aug.14.2020Charles Miller discussed “his new company, Lynk Global, connecting mobile phones to [small] satellites for global coverage. We discussed other topics as well, including some of the commercial space history made by our guest.”

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction