Category Archives: Space industry

Roundup: Reusable rocket vehicles – February.2024

Find here the latest news and updates on reusable rocket powered vehicles in operation and in development. (See also the previous Roundup from November 2023.) Such technology should eventually lead to space transports with aircraft-like operation. That is, orbital flight and return followed by rapid reflight with minimal preparation. Vehicles should fly thousands of times with only occasional refurbishment and, most importantly, spacefare should fall to levels similar to long distance airfare.

In the decades following the launch of Sputnik 1, missile derived expendable launchers dominated and progress towards reusable transports moved at a slow crawl. The one major attempt at reusablity, the Space Shuttle, was a major disappointment, providing no reduction in space transport costs due to the lengthy refurbishment and component replacements after each flight. However, progress sped up considerably in the past decade with the arrival of the SpaceX Falcon 9, whose boosters have achieved 248 reflights and 277 landings as of Feb.26.2024.

Reusable rocket powered vehicle designs fall roughly into the following five categories:

  1. Partially reusable orbital transport:
  2. Fully reusable orbital transport:
  3. Reusable spacecraft:
  4. Fully reusable suborbital:
  5. Fully reusable hypersonic suborbital for long distance point-to-point transport:

Below are reports on several projects and programs that fall into at least one of these categories.

** SpaceX Starship –  Third orbital flight test expected in March.

Recent remarks from Elon Musk indicate that the third test flight could happen by mid-March. The test will launch the combo of Starship 28 and Super Heavy Booster 10, which have been undergoing preparations for the flight for several months including repeated trips to and from the orbital launch site for cryogenic pressure tests, engine firings, etc. In mid-February the stages were stacked atop the launch mount and twice an attempt at a wet dress rehearsal was made but each time the propellant filling was stopped prematurely and the rehearsal ended. Subsequently, the Starship was de-stacked and moved to the nearby suborbital test area for engine testing, starting with a spin prime test on Feb.26th (spin prime refers to a test of the engine turbopumps). Booster 10 was moved back to the production site.

[ Update: Just after posting this item, the FAA announced that the mishap investigation with SpaceX has been completed. Presumably, they will soon issue a permit for the next flight test.

SpaceX must implement 17 corrective actions. Seven on the boosters and ten on the Starship upper stage.

SpaceX also has an update describing the second test flight and reasons for the loss of the two stages. For the booster:

Following stage separation, Super Heavy initiated its boostback burn, which sends commands to 13 of the vehicle’s 33 Raptor engines to propel the rocket toward its intended landing location. During this burn, several engines began shutting down before one engine failed energetically, quickly cascading to a rapid unscheduled disassembly (RUD) of the booster. The vehicle breakup occurred more than three and a half minutes into the flight at an altitude of ~90 km over the Gulf of Mexico.

The most likely root cause for the booster RUD was determined to be filter blockage where liquid oxygen is supplied to the engines, leading to a loss of inlet pressure in engine oxidizer turbopumps that eventually resulted in one engine failing in a way that resulted in loss of the vehicle. SpaceX has since implemented hardware changes inside future booster oxidizer tanks to improve propellant filtration capabilities and refined operations to increase reliability.

For the Starship stage:

At vehicle separation, Starship’s upper stage successfully lit all six Raptor engines and flew a normal ascent until approximately seven minutes into the flight, when a planned vent of excess liquid oxygen propellant began. Additional propellant had been loaded on the spacecraft before launch in order to gather data representative of future payload deploy missions and needed to be disposed of prior to reentry to meet required propellant mass targets at splashdown.

A leak in the aft section of the spacecraft that developed when the liquid oxygen vent was initiated resulted in a combustion event and subsequent fires that led to a loss of communication between the spacecraft’s flight computers. This resulted in a commanded shut down of all six engines prior to completion of the ascent burn, followed by the Autonomous Flight Safety System detecting a mission rule violation and activating the flight termination system, leading to vehicle breakup. The flight test’s conclusion came when the spacecraft was as at an altitude of ~150 km and a velocity of ~24,000 km/h, becoming the first Starship to reach outer space.

SpaceX has implemented hardware changes on upcoming Starship vehicles to improve leak reduction, fire protection, and refined operations associated with the propellant vent to increase reliability. The previously planned move from a hydraulic steering system for the vehicle’s Raptor engines to an entirely electric system also removes potential sources of flammability.

The update goes on to say the measures to protect the launch pad worked well and few fixes were required after the test.

The next test flight will implement various

performance upgrades, including the debut of a new electronic Thrust Vector Control system for Starship’s upper stage Raptor engines and improving the speed of propellant loading operations prior to launch.

]

The company is preparing for up to nine test flights in 2024. The rate of production of vehicles should be sufficient for such a test program as indicated by this recent image of four Super Heavy boosters inside the Megabay 1 at Starbase:

SpaceX continues to build up the Starship infrastructure at a rapid pace. Here is a sampling of the changes since the last Roundup:

  • Starbase orbital launch site: Major modifications and upgrades have been made at the launch site area including
    • The tank farm received new horizontal cryogenic tanks and related piping, pumps, propellant coolers, etc.
    • Two of the eight vertical tanks were dismantled
    • A shielding wall was added to protect the tank farm during liftoff.
    • Heavy steel plates erected on the base of the tower will protect it from the blast during liftoffs.
  • Starbase production site:
    • New permanent buildings are replacing the tent-like structures used for production of major components, particularly the steel ring segments that make up the structure of each stage.
    • Construction of the second Megabay is nearing completion.
    • These bays are used for the stacking of the steel ring segments, engine installation, and other final assembly operations on the Starship stages.
    • Construction of an office building and parking garage has begun.
  • Massey’s site: The former gun club site has become more than just a storage site.
    • New vehicle stages undergo initial cryogenic and stress testing here.
    • Similar testing for new structure designs
    • An engine test facility is under construction.

This video from RGV Aerial Photography gives a sky view of Starbase along with a narration of recent changes. (Note that they divide the Production Site is divided into two sections: the Sanchez open yard area and the Build site.)

And here is a summary of recent SpaceX activities at Starbase and in Florida:

See also the latest NASASpaceFlight.com update on Starbase.

—- SpaceX has now revealed where it would like to put the second launch tower at Starbase:

—- Starship activity at Cape Canaveral and the Kennedy Space Center is becoming more visible again after a long period when not much was happening in public view. In 2022 SpaceX built a Starship launch tower adjacent to the Pad-39A complex used for Falcon 9/Heavy launches and Crew Dragon missions.  Several sections for a second tower were assembled at the company’s facility on Roberts Road. However, work on the Pad-39A tower and the second tower were suspended without any public explanation.

The Pad-39A Starship facility work was perhaps stopped due to concerns at NASA that a Starship accident could damage the nearby Falcon launch facility and leave the agency without a domestic means of sending crews to the ISS. A new service tower at SLC-40 is nearly complete and it will enable Crew Dragon flights from there. Perhaps, after SpaceX has demonstrated a crew launch from SLC-40, work on the Pad-39A tower and launch mount will resume.

Recently, most of those tower sections at Roberts Road have been sent via barges to Starbase in Boca Chica for the second tower there (see above item). However, a second tower at the Cape remains very much a priority. Recently, it was revealed that an environmental impact study is underway for a second Starship launch facility:  Proposed Action – Space Force Starship EIS.

The study will consider two possible locations:

  • Space Launch Complex 37, from which the final Delta-4 Heavy rocket will lift off in March.
  • A new SLC-50 site within the Cape Canaveral Air Station site between SLC-37 and SLC-40.

So the study will take at least a year and so construction cannot start till that is finished and the various permits and approvals are given. For more details: SpaceX wants to take over a Florida launch pad from rival ULA | Ars Technica – Feb.17.2024

—- A space habitat payload contract announced: Starlab Space Selects SpaceX’s Starship for Historic Launch | Voyager Space – Jan.31.2024.

Starlab Space LLC (Starlab Space), the transatlantic joint venture between Voyager Space and Airbus, today announced the selection of SpaceX to launch the Starlab commercial space station to low-Earth orbit (LEO). Starship, SpaceX’s fully reusable transportation system designed to carry both crew and cargo to Earth orbit, the Moon, Mars and beyond, will launch Starlab in a single mission prior to the decommissioning of the International Space Station.

“SpaceX’s history of success and reliability led our team to select Starship to orbit Starlab,” said Dylan Taylor, Chairman and CEO, Voyager Space. “SpaceX is the unmatched leader for high-cadence launches and we are proud Starlab will be launched to orbit in a single flight by Starship.”

—- Elon Musk gave a talk on January 8th to Starbase employees about the status and future of the Starship program. His  presentation was quite informative but one could easily have missed some important items during his lengthy discourse. This video has edited out everything but his key statements and packs them into about 10 minutes:

—- More Starship related articles, reports, and other web resources.

For background on Starship see the SpaceX Starship report, which is published by NewSpace Global and for which I was the primary author. The initial version came out in March 2023 and then we updated it in May to include coverage of the first flight test.

==================

Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Starlink’s Progress, Vulcan, Moon Landing Attempts
Vol. 19, No. 1, February 2, 2024

Space Frontier Foundation Award for NewSpace Journalism

==================

** SpaceX Falcon Rockets & Dragon Spacecraft

The Falcon program continues to be extremely active as shown by the accumulation of 313 launches so far. The company hopes to do as many as 150 Falcon launches this year. The majority of these will carry Starlink satellites to low earth orbit but there will be many other commercial and government payloads as well.

Reusability plays a major role in Falcon operations and is key to the affordability of the Starlink constellation. There have been  248 reflights and 277 landings as of Feb. 25th. Some boosters have flown 19 times and the company now believes they can fly up to 40 times. An engine has flow 22 times:

—- Polaris DawnFirst EVA from Dragon could happen this summer.

Polaris Dawn is a private Crew Dragon mission sponsored by Jared Isaacman. Currently, the mission is targeted for launch sometime in the summer of 2024. The goals of the mission include:

  • … flying higher than any Dragon mission to date and endeavoring to reach the highest Earth orbit ever flown [by a crewed vehicle].
  • Orbiting through portions of the Van Allen radiation belt, Polaris Dawn will conduct research with the aim of better understanding the effects of spaceflight and space radiation on human health.
  • … the crew will conduct scientific research designed to advance both human health on Earth and our understanding of human health during future long-duration spaceflights
  • …first crew to test Starlink laser-based communications in space, providing valuable data for future space communications system necessary for missions to the Moon, Mars and beyond.
  • At approximately 700 kilometers above the Earth, the crew will attempt the first-ever commercial extravehicular activity (EVA) with SpaceX-designed extravehicular activity (EVA) spacesuits, upgraded from the current intravehicular (IVA) suit.

More at

—- X-37 launches on Falcon Heavy A high apogee orbit for USAF spaceplane

A Falcon Heavy rocket put one of the two reusable X-37 spaceplanes into orbit on December 28, 2023. The vehicle will carry out a classified mission for the US Air Force. Previous missions have lasted as long as two years before the winged vehicles returned for landings either in California or at Cape Canaveral, Florida.

This mission differs from previous ones in going to a much higher orbit. The spaceplane has been tracked by civilian observers:

According to Ars Technica:

Amateur observations of the spaceplane indicate it is flying in a highly elliptical orbit ranging between 201 and 24,133 miles in altitude (323 and 38,838 kilometers). The orbit is inclined 59.1 degrees to the equator.

An interesting video report from the Wall Street Journal about the X-37 and its Chinese counterpart of similar design and size:

Both the U.S. and China launched secretive space missions using high-tech space planes right before the new year. The U.S. blasted its autonomous X-37B plane up in a SpaceX Falcon Heavy rocket just weeks after China dispatched its own Shenlong spacecraft, sparking lots of speculation about where the planes are going and whether they could be used as space weapons.

I take a look at what the U.S.’s Boeing-made X-37B space plane is capable of doing, and how these launches underscore the intensifying space race between superpowers.

0:00 X-37B secret mission
0:39 X-37B features
1:21 Potential space applications
3:24 New mission to deep space?
4:55 The U.S.-China space race

** Blue Origin New GlennBE-4 Methalox engines drive Vulcan to orbit & New Glenn 1st stage rolls out

Blue Origin activity has ramped considerably in the past few months at the Cape. The company appears to be making good progress towards the first launch of the New Glenn heavy lift rocket later this year. They aim to launch twice by the end of the year.

A fully stacked New Glenn with a flight capable first stage and an engineering prototype upper stage rolled to the pad at Launch Complex 36 on February 21st: Blue Origin Debuts New Glenn on Our Launch Pad | Blue Origin – Feb.21.2024.

Our New Glenn vehicle successfully rolled out and upended today for the first time on the pad at Launch Complex 36 (LC-36). This milestone represents the first view of the advanced heavy-lift vehicle, which will support a multitude of customer missions and Blue Origin programs, including returning to the Moon as part of NASA’s Artemis program.

Everything on the pad is real New Glenn hardware. The upending is one in a series of major manufacturing and integrated test milestones in preparation for New Glenn’s first launch later this year. The test campaign enables our teams to practice, validate, and increase proficiency in vehicle integration, transport, ground support, and launch operations. These tests do not require engines, which are hotfiring at the historic 4670 Test Stand in Huntsville and Launch Site One in West Texas.

A view of the first fully stacked New Glenn vehicle raised at Launch Complex 36. It will undergo a series of tanking and mechanical system tests. Credits: Blue Origin

The announcement goes on to say:

  • The tests will demonstrate cryogenic fluid loading, pressure control, and the venting system
  • The launch pad and ground systems are complete and will be activated for the first time
  • The reusable first stage is designed for a minimum of 25 missions
  • The stage will land on a sea-based platform located about 620 miles (1,000 km) downrange.

More about preparations underway for getting New Glenn off the ground.

—- Testing of the BE-4 engines for the New Glenn rocket:

—- Blue orbital space tug – More details about the reusable in-space vehicle: Blue Origin touts capabilities of Blue Ring transfer vehicle | SpaceNews – Feb.2.2024.

  • 12 docking ports, each able to accommodate payloads weighing up to 500 kilograms
  • Can hold “payloads weighing up to two and a half tons
  • offers 3,000 meters per second of delta V, or change in velocity, to maneuver to different orbits
  • Can deliver payloads to particular orbits and can also host a payload, providing it with services such as power, communications, etc.
  • Can act as a refueling depot since it is re-fuelable and can also refuel other spacecraft

** Sierra SpaceVulcan launch of Tenacity, first Dream Chaser cargo vehicle, expected by summer

The successful launch of the  first ULA Vulcan expendable rocket on January 8th sets up the countdown to the first launch of the reusable Dream Chaser lifting-body vehicle by late spring or early summer of this year. The Dream Chaser won a NASA contract for seven flights of cargo to the ISS. As with the SpaceX Dragon, Dream Chasers can also return cargo to the ground, unlike the single-use Northrop Grumman Cygnus cargo carrier that burns up on reentry.

The Dream Chaser is currently in preparation for tests to insure it can survive the vibrations of launch:

A video about the testing: Sierra Space’s Dream Chaser Spaceplane at NASA’s Armstrong Test Facility in Ohio – Sierra Space

The stage is set for the reveal of Dream Chaser in full launch configuration atop the world’s largest vibration table at NASA’s Armstrong Test Facility in Ohio. More to come.

See also Dream Chaser undergoes NASA testing ahead of first flight – NASASpaceFlight.com

** Rocket LabRecovery of first stage

Rocket Lab’s recent launch of an Electron two stage rocket included the successful recovery of the first stage. The stage returned via parachute to a soft landing onto the ocean where it floated until lifted into a recovery vessel. The company has recovered first stages on some previous missions but has not yet reused a stage. However, an engine has flown twice.

Press release for the mission: Rocket Lab Successfully Launches First Electron Mission of Busy 2024 Launch Schedule | Rocket Lab – Jan.31.2024

The ‘Four Of A Kind’ mission for Spire’s customer NorthStar successfully launched from Rocket Lab Launch Complex 1 in New Zealand at 19:34 NZDT / 06:34 UTC. Rocket Lab’s Electron rocket deployed four Space Situational Awareness (SSA) satellites to a 530km circular Earth orbit where the satellites, built and operated by Spire, will monitor near-Earth objects from space to provide timely and precise information for space object detection, tracking, orbit determination, collision avoidance, navigation, and proximity alerts. The mission was Rocket Lab’s 43rd Electron launch overall, bringing the Company’s record of successfully deployed satellites to 176. The mission was the first of a busy launch year for Rocket Lab, with the Company scheduled to launch more in 2024 than any previous year since the Company began missions in 2017.

The mission also resulted in the successful return of the rocket’s first stage after launch as part of Rocket Lab’s plan to evolve Electron into a reusable rocket. After launch and stage separation, Electron’s booster made its way back to Earth under a parachute and splashed down in the Pacific Ocean at approximately 17 minutes post lift-off. Rocket Lab’s recovery operations are currently underway to retrieve the stage and bring it back to the Company’s production complex for a post-launch review and analysis before proceeding to one of the program’s final tasks: reusing a previously-launched first stage on a future mission.

Note that the small first stage for the Electron does not use propulsive braking on its return. Surviving the fall from high altitude relies instead on a layer of thermal protection as it heats up from the air drag. The drag slows the fall to the point it can release the parachute. See the Reusable Rockets section at Rocket Lab for more details.

The first stage also tested a thermal protection panel that the company plans to use on the reusable Neutron mid-sized launcher:

The Neutron booster stage will be too large for parachute return but will have sufficient scale to enable propulsive braking similar to the SpaceX Falcon 9.

** Stoke SpaceUpdate on development of a fully reusable vehicle.

The previous Roundup include a lengthy section on Stoke Space’s unique design of a two stage fully reusable rocket.  Stoke CEO Andy Lapsa adds lots of interesting additional details in this interview with NASASpaceflight:

In this episode of NSF Live, Das will talk with Andy Lapsa, CEO of Stoke Space. Topics will include Aerospike Engines, the path to flight, the next testing milestones, and much more.

—- Mach33 Financial Group offers a 40 page investment guide on Stoke Space.

—- Updates on Stoke Space engine tests:

** Relativity Space– Progress on engine development

Plans for 2024 in latest newsletter: What’s Ahead in 2024 – Relativity Space.

We’ve got another big year ahead of us at Relativity. Here’s a preview of what you can expect to see in the months ahead: 

    • Propulsion progress: Block upgrades to the design of our Aeon R engines to unlock power and performance. We’ll be testing lots of different component configurations and doing hot fires at various power levels throughout the year.  
    • Vehicle architecture: Progressing from preliminary design review (PDR) to critical design review (CDR), getting us significantly closer to our flight-ready vehicle.  
    • Manufacturing: How our production teams drive rapid iteration cycles. And, how we are building out our HQ to meet the production demands of Terran R at scale.  
    • Testing: Expand our testing campaigns to dive into data collection for many of Terran R’s core elements. And yes, lots and lots more hot fire coming your way with engine testing! 
    • Infrastructure: Continue the build-out of engine and stage test stands at NASA Stennis in Mississippi, the development of our new and improved larger launch pad at, LC-16 in Cape Canaveral, and our headquarters in Long Beach to ramp up manufacturing.  

—- Two videos about engine development: Relatively Speaking: How Engines are Manufactured at Relativity

Our teams wholeheartedly embrace iteration, leveraging additive techniques for rapid engine component development. This approach accelerates our design process, leading to improved performance and unprecedented testing speed. In less than 2 years, we progressed from sizing Aeon R to completing a successful mission duty cycle, conducting over 1,000 component and subsystem tests along the way. This rapid data accumulation culminated in this month’s successful MDC.

Check out this behind the scenes look at our iterative approach to engine design from blank sheet sketches to fire breathing engines.

0:00 – 0:20 Intro: How Engines are Manufactured at Relativity
0:21– 00:44 The Benefits of Powder Bed Fusion Printing
00:43 –1:20 Unlocking Rapid Iteration
1:20 – 2:08 How Powder Bed Fusion Works
2:09 – 2:42 Powder Bed Fusion in Practice: Gas Generator Injector
2:43 – 3:33 Part Assembly Line Journey to Full Assembly
3:34 – 4:19 End: The Power of Iterative Design

 Learn more about Aeon R: https://bit.ly/aeonr

—- Relatively Speaking: Aeon R Engine Explained

Taking it back chalkboard style, we’re breaking down our Aeon R engine 101 style, explaining how our Aeon R engine systems work together to create thrust. We’ll cover how each subsystem collaborates to produce blue fire.

Aeon R Engine, By the Numbers:
✔️13x engines powering Terran R
✔️258,000 lbf each, for a combined liftoff thrust of 3,354,000 lbf
✔️ High-pressure gas generator cycle
✔️ LOX/Methane propellants

0:00 – 0:34: Introduction: What is a Rocket Engine.
0:35 – 0:56: The Purpose of a Rocket: Understanding the Principle of Conservation of Momentum.
0:57 – 1:34: Understanding the Functionality of a Thrust Chamber Assembly.
1:35 – 2:31: Insight into the Operations of a Gas Generator.
2:32 – 2:55: The Crucial Role of Valves.

=== Hypersonic rocket vehicles – Long distance point-to-point

** POLARIS Flying demonstrator Mira with aerospike engine

Polaris is a German company developing a long distance spaceplane they call AURORA. They have built a series of sub-scale demonstratorsof increasing size, mass and complexity“.  So far the demonstrators have used turbojets for propulsion but the current Mira prototype also includes an aerospike rocket engine:

MIRA is a dedicated validation vehicle for in flight-demonstration and testing of linear aerospike rocket engines. Linear aerospikes form a novel class or rocket engines that offer large performance increases compared to conventional rocket engines. Flight-testing including engine in-flight ignition and operation will be conducted under a Bundeswehr/BAAINBw study contract awarded in April 2023. The first flight under turbine power was successfully conducted on 26th of October, 2023 at Peenemünde Airport. Flights under rocket-power will follow soon. Similar to ATHENA, MIRA is licensed for BVLOS operation with a telemetry range of 20 km. MIRA is also equipped with a redundant flight termination system (FTS). MIRA is the largest and most complex vehicle built and flown by POLARIS so far. The total development time from begin of vehicle design from scratch until first flight was just six and a half months.

In January the aerospike on the MIRA was activated during a ground roll test for three seconds at 60% thrust: POLARIS Spaceplanes Conduct First Rocket-Powered Roll Test | European Spaceflight – Feb.1.2024.

The next demonstrator is NOVA:

NOVA will be the final demonstrator before the spaceplane. The main purpose is the demonstration of safe and repeatable rocket-powered supersonic flight capability at high altitudes, while fulfilling the full regulatory framework required for airport-based operation. The first flight is planned for 2024.

NOVA will be nearly 7 meters long and include four kerosene fueled jet turbines and one aerospike engine.

** New Frontier AerospaceMjolnir engine progress

New Frontier posts a new video about their Mjolnir engine in development for hypersonic propulsion:

– Affordable
– 3D printed
– Full flow staged combustion
– 100:1 thrust to weight
– “Gas and go”
– Ideal for both hypersonic and in-space propulsion

See a discussion of New Frontier in the previous Roundup in the section about co-founder Jess Sponable. There is also this article from last year from Alan Boyle: New Frontier Aerospace bridges hypersonic past and future | Geekwire – Sept.8.2023

=== Europe

** ESA requests BEST proposals for reusable launch systems

The European Space Agency (ESA) has announced the Boosters for European Space Transportation (BEST!) initiative, which invites proposals from commercial industry for development of reusable space transportation systems, particularly reusable boosters with liquid propulsion: ESA Publishes Call for Reusable Rocket Booster Concepts | European Spaceflight – Feb.10.2024

The Boosters for European Space Transportation (BEST!) initiative is being managed by ESA’s Space Transportation Directorate under its Future Launcher Preparatory Programme (FLPP). According to the initiative’s call, the aim of BEST! is to allow the development of new launcher architectures or the improvement of existing launch systems. That second element is an interesting addition as it goes on to state that concept studies should focus on a liquid reusable booster or a reusable first stage.

The management of Europe’s primary launch system provider, Arianespace, disputed the need for reusability when selecting the design for Ariane 6, the successor to its Ariane 5 workhorse expendable rocket. However, the success of Falcon 9 in lowering space access costs and attracting most of the available payload market has forced Arianespace to begin several projects involving development of reusable rockets (e.g., see next item about MaiaSpace). The BEST! initiative looks to be another source of funding for Arianespace’s reusability program:

The phrasing of “liquid reusable booster” and the fact that the programme will potentially be aimed at existing launch systems suggests that this may be part of an Ariane 6 evolution. If this is not one of the direct aims of the initiative, ArianeGroup will certainly be in a position to utilize BEST! as a means to fund, at least partially, the transfer of the knowledge gained during the ongoing development of the reusable booster demonstrator Themis to an evolved Ariane 6 variant.

** MaiaSpace Developing a partially reusable microlauncher

ArianeSpace created the subsidiary MaiaSpace to develop a low cost launcher with a reusable first stage that can deliver up to 3 tonnes to low earth orbit. The first stage will be powered by the Prometheus® engine, an ESA and  ArianeGroup engine that uses liquid Methane and LOX propellants. The booster will land on a sea platform similar to the Falcon 9.

The goal is to fly the first orbital mission by the end of 2025.

Some recent updates:

** PLD Space – Gains in funding for MIURA 5 medium lifter

PLD Space had a successful first launch last year of the MIURA 1 suborbital rocket. The lessons learned from this test will apply to  development of MIURA 5, an orbital two stage rocket whose first stage will return via parachute for recovery and reuse. They aim for an initial launch of MIURA 5 in 2025.

PLD recent obtained an award from ESA to assist development of the payload adapter for MIURA 5: PLD Space gets even more Boost! | ESA – Feb.19.2024

The contract signed today by ESA and PLD Space supports the Miura 5 launch service development by co-funding to the value of €1.3 million to develop a modular, customisable, payload accommodation system. Designed to release all types of satellites with as much flexibility as possible, the payload system – called MOSPA for Modular Solution for Payload Adapter – will allow PLD Space to offer its customers a wider range of missions and services, including accommodation of CubeSats, nanosatellites and microsatellites. The development of the modular payload adapter will be done in partnership with OCCAM Space.

And PLD also won a loan from the Spanish government: Spanish Government Awards €40.5M Loan to PLD Space for Miura 5 | European Spaceflight – Jan.27.2024

** ESA Commercial Cargo spacecraft initiative

The European Space Agency (ESA) started a project in 2023 to sponsor commercial development and operation of a craft to take and return cargo to the ISS and other future space stations in low earth orbit. The program is clearly inspired by the success of NASA’s commercial cargo program, which includes vehicles operated by SpaceX, Northrop Grumman, and Sierra Space.

Proposals will be submitted this month. The goal is for a demonstration mission by 2028.

The reusable Nyx spacecraft from the Exploration Company is one design that meets the requirement to take a minimum of 4000 kilograms to LEO and bring 2000 kilograms back to earth.

For more info, see:

=== China

** Vertical takeoff and landing test flight of a rocket built by the Chinese company Landspace:

BIG BREAKING: Here comes another Chinese private firm challenging SpaceX with successful hop test to achieve reusability of rockets. China’s Landspace conducts first vertical takeoff, vertical landing (VTVL) test for reusable stainless steel rocket. Chinese launch startup Landspace executed a first vertical takeoff, vertical landing with a test article Friday at a launch and recovery site at Jiuquan spaceport.

The Zhuque-3 VTVL-1 reusable vertical take-off and landing recovery verification rocket lifted off from Landspace facilities at Jiuquan Satellite Launch Center at 3:00 a.m. Eastern (0800 UTC), Jan. 19.

The methane-liquid oxygen test article reached an altitude of around 350 meters during its roughly 60-second flight before setting down in a designated landing area. The landing had an accuracy of about 2.4m and a landing speed of about 0.75m/second, according to Landspace.

The test is part of the development of the stainless steel Zhuque-3 rocket first announced in November 2023. The company is aiming for the first flight of Zhuque-3 in 2025. The company earlier planned to execute this first VTVL test last month.

** OrienSpace gains funding for development of partially reusable rocket: Chinese launch startup Orienspace secures $83.5 million | SpaceNews – Feb.14.2024

The funds will be used for research and development of its first liquid propellant rocket. The 60-meter-tall, 4.2-meter-diameter Gravity-2 will use nine 100-ton-thrust Yuanli-85 gas generator, variable thrust kerosene engines for the first stage and be supported by solid boosters. The first stage is planned to be reusable.

Find more ab out OrienSpace rocket designs here.

** Space Circling of China is developing high-thrust liquid fueled engines suitable for reusable launch vehicles. The company recently obtained additional funding to support its efforts: Chinese rocket engine startup Space Circling secures funding | SpaceNews – Feb.20.2024

Here is an announcement (Google translate) of a test of the new Qiaolong-1 engine:

On January 31, Tianhui Aerospace successfully completed the first complete ignition test of its independently developed 85-ton staged combustion pumping cycle liquid oxygen kerosene engine ‘Qiaolong No. 1’ at the Tongchuan test base. “

On January 31, the 85-ton staged combustion pumping cycle liquid oxygen kerosene engine “Qiaolong No. 1” independently developed by Tianhui Aerospace successfully completed the complete engine ignition test at the Tongchuan test base. This ignition verified the correctness of the ignition and shutdown timing of the entire engine system. It also verified the advantages of the new staged combustion extraction cycle engine using structural fusion design…

The engines would be provided for the rockets of other companies as well as Space Circling’s own reusable vehicles:

 The Huilong-1 would have a length of 38 meters, a 3.35-meter-diameter core stage and 2.25-meter-diameter boosters. It is to be capable of lifting five metric tons to sun-synchronous orbit.

The larger Huilong-2 would be capable of carrying nine tons to geosynchronous transfer orbit or 25 tons to LEO.

** Other Chinese reusable rocket developers:

See also the table at SpaceNews.

=== Reusable suborbital rocket vehicles for tourism, science & technology

** Suborbital is worth the effort…

Back in 1990s and early 2000s, many advocates for entrepreneurial commercial space development promoted a step-by-step approach that could provide a viable path to low cost orbital space transports. This would require less capital to start with and the revenue generated along the way would sustain the startups as they developed increasingly capable vehicles.

In particular, we hailed the development of reusable suborbital rockets  (e.g. see my Space Review article from 2003) and the introduction of prizes like the $10M Ansari X PRIZE,  won in 2003 by the Burt Rutan’s SpaceShipOne project, and NASA’s Centennial Challenges.

SpaceX became a success despite skipping the suborbital spaceflight option (except for the Grasshopper test flights) and prize competitions. Elon and NASA supplied sufficient capital to enable SpaceX to go a more direct route to orbit. However, these approaches did benefit other NewSpace participants.

For example, the Intuitive Machines IM-1 lunar lander can trace its lineage back to the Lunar Lander Challenge and John Carmack’s Armadillo Aerospace team:

Blue Origin is using the lessons learned from their reusable suborbital New Shepard (see next item) for development of the New Glenn booster :

Building on experience operating its reusable New Shepard suborbital launch system, Blue plans to land its New Glenn rockets beginning with the first flight. “That sounds aggressive, but it’s not,” Jones said. “Think about how many times we’ve landed New Shepard right on the dime. All of the avionics systems, flight systems and everything that we’ve learned, we’ve transferred over—even the people have all come to work for New Glenn—and so I feel pretty confident.”Aviation Week

Note also that the New Glenn upper stage uses a vacuum version of the BE-3 engine that powers the New Shepard. The multiple test flights of New Shepard will no doubt contribute to making the New Glenn propulsion system more reliable.

** Blue Origin New ShepardReturn to flight

A New Shepard rocket booster failed during an uncrewed flight on Sept. 12, 2022. The capsule fired its emergency abort motor and successfully separated from the booster and landed with its science and technology payloads undamaged. The investigation found

the direct cause of the mishap to be a structural fatigue failure of the BE-3PM engine nozzle during powered flight. The structural fatigue was caused by operational temperatures that exceeded the expected and analyzed values of the nozzle material.

Blue Origin implemented

corrective actions, including design changes to the combustion chamber and operating parameters, which have reduced engine nozzle bulk and hot-streak temperatures. Additional design changes to the nozzle have improved structural performance under thermal and dynamic loads.

New Shepard flights resumed on Dec.19.2023: Blue Origin Successfully Completes 24th Mission to Space | Blue Origin

The flight carried 33 payloads from NASA, academia, research institutions, and commercial companies, bringing the number of payloads flown on New Shepard to more than 150. Club for the Future, Blue Origin’s nonprofit, flew 38,000 postcards as part of its Postcards to Space program.

The long delay before resuming flights led to some speculation that Blue might end its suborbital program so as to focus more resources on development of its New Glenn orbital rocket (see above). However, company management express support for New Shepard following the successful NS-24 flight:

Demand for New Shepard flights continues to grow and we’re looking forward to increasing our flight cadence in 2024.

** Virgin Galactic SpaceShipTwoVSS Unity carries four passengers on first flight of 2024

On January 26th, Virgin Galactic successfully flew the VSS Unity spacecraft on

its first spaceflight of 2024 and 11th mission to date. Today’s ‘Galactic 06’ flight marked the first time all four seats aboard VSS Unity were occupied by private astronauts.

Following the flight, Virgin Galactic discovered that a pin used in the attachment of the SpaceShipTwo to the carrier aircraft had fallen out at some point after the spacecraft had detached. This had no affect on the rocket plane, which successfully completed its mission:

Assuming no major delay from this problem, the company’s next mission is planned for the second quarter of 2024 and “will include both a researcher and private astronauts“.

In November of 2023 the company announced that it would reduce flights from monthly to quarterly in 2024. This would release additional funding for the development of the Delta class ships. (See Q3 2023 Earnings presentation – Nov.8.2023 (pdf).)

The next-gen Delta vehicles will be more robust than the current VSS Unity model. Deltas will fly up to two times per week versus once per month for Unity. The Deltas will fly with 6 customers versus the current maximum of 4. At the expected prices of $450k per person or $600k per seat for research flights, monthly revenues could reach close to $30M, which is more that 10 times the current max income.

The goal is to begin testing the Delta ships in 2025 and then start commercial flights in 2026. A new carrier mothership would be built after the ramp up of the Delta fleet.

=== Other reusable rocket and space vehicle related news:

=== Amazon Ads ===

When the Heavens Went on Sale:
The Misfits and Geniuses Racing to Put Space Within Reach

===

Space Race 2.0:
SpaceX, Blue Origin, Virgin Galactic, NASA,
and the Privatization of the Final Frontier

Roundup: Reusable rocket vehicles

Significant progress is being made towards space transportation systems that operate repeatedly rather than just fly once and then discarded. Reusable rocket powered vehicles will eventually lower the cost of access to space by orders of magnitude from expendables when the vehicles can fly  hundreds of times with only brief refurbishment between flights.

While the Space Shuttle program aimed for cost-effective reusablity, the extensive refurbishment, if not rebuilding, after each flight prevented the Shuttles from making any progress towards lower cost space access.

The multiple recoveries and reuses of SpaceX Falcon 9 first stages have proven that lower cost launch can be attained even with partial reuse. The per kilogram to orbit cost is about $2000, which is roughly a factor of 10 lower than conventional expendables were when the program started.

Below are updates on the SpaceX vehicles as well as several other reusable rocket systems in development including suborbital and long distance point-to-point vehicles.

Liftoff for the first test flight of a Starship with Booster B7 and upper stage SN24 on April 20, 2023. Credits: SpaceX

** SpaceX StarshipSecond orbital flight test soon.

[ Update Nov.21.2023: SpaceX released a statement summarizing the second flight tests: Starship’s Second Test Flight – SpaceX – Nov.21.2023.

The statement basically restates the same positive and negative aspects of the flight listed in the update below. However, one difference is that the destruction of the booster was due to “a rapid unscheduled disassembly“, i.e. an explosion in the vehicle’s systems, rather than a deliberate detonation by the flight termination system. The upper stage, on the other hand,  was definitely destroyed by the FTS:

The flight test’s conclusion came when telemetry was lost near the end of second stage burn prior to engine cutoff after more than eight minutes of flight. The team verified a safe command destruct was appropriately triggered based on available vehicle performance data.

The statement provides no information or speculation on what might have led to the destruction of the stages.

Update Nov.20.2023: The second flight test lifted off on Nov.18th within a tight 20 minute window. The test demonstrated that the major issues that afflicted the first flight in April had been resolved.

  • No significant damage to the launch pad. The steel plate and water deluge system worked to protect the launch mount and the ground area beneath it. Elon Musk: “Just inspected the Starship launch pad and it is in great condition! No refurbishment needed to the water-cooled steel plate for next launch…
  • No engine failures or engine compartment fires this time on the Super Heavy Booster. All 33 engines performed well from launch till staging.
  • Hot staging, a major design change implemented since the first test, appeared to work well.
  • The six engines on the Starship upper stage started up at staging and powered the stage to 148 kilometers, thus reaching space.

There were, however, two significant shortcoming to the test:

  • After separation, the booster began maneuvering for the boostback burn, which would have led to a soft landing on the waters of the Gulf of Mexico. However, the flight termination system soon destroyed the vehicle. SpaceX has not yet reported what led to  the abort. It’s possible that the hot staging resulted in sloshing of propellants, which could have caused one or more of the engines to shut down.
  • After the upper stage engines burned for 6 minutes of the planned 6.5 minute thrust time, the flight termination system destroyed the stage. SpaceX has not yet indicated what caused the abort just 30 seconds before scheduled engine cutoff.

Both of these problems will probably have straight-forward fixes and won’t significantly delay the next test flight. The most important component of the Starship system yet to be tested is the heat shielding on the upper stage. This test flight would have had the upper stage reach just short of orbital velocity and reenter near Hawaii. Hopefully, the next flight will achieve this goal.

Elon Musk has indicated that a Starship for the next test flight could be ready in 3 to 4 weeks. However, before a FAA license can be approved, SpaceX must show that it understands the problems with this flight and has implemented solutions.

See also:

Some videos of the launch:

]

SpaceX has designed Starship for recovery of both stages after each mission and re-flight after a rapid turnaround. If this goal is achieved,  Starships should allow the cost of access to orbit to drop by another factor of 10 over the Falcon 9. The cost could go even lower if the flight rate can rise to a very high level.

A series of test flights are planned to achieve the operational goals for the vehicle. Meanwhile, the factories at Boca Chica Beach, Texas are churning out boosters and upper stages for the tests.

As of the time of this post, the second Starship flight test is set for November 18th. Beyond simply testing as many components and systems as possible, the end goal is to send the upper stage nearly  into orbit and have it reenter the atmosphere over the Pacific and survive the tremendous heating during reentry. It will splashdown in waters near Hawaii. For this test there will be no attempt at a powered landing. The booster, however,  will attempt a soft landing onto the waters of the Gulf of Mexico. Presumably, the stage will be retrieved if it floats.

The first orbital test flight on April 20, 2023 succeeded in testing many systems in the first stage booster and it showed in a rather spectacular manner that major fixes and improvements were needed for many of those systems. Most notably, the launch mount and its ground substructure were badly damaged, with debris and dust hurled over a wide area. There were also Raptor engine failures as well as fires in the engine compartment that eventually severed control of the booster and prevented separation of the stages. Thus there was essentially no testing at all of the Starship upper stage.

SpaceX has spent the past several months implementing those fixes and improvements. The launch mount has undergone a major overall that included the installation of metal flooring that implements a water deluge system to handle the enormous heat and blast produced by 33 Raptors firing at liftoff. The engine compartment was also modified to better prevent fires and to isolate a fire if one does occur. Using electric actuators instead of hydraulics to power the thrust vector control for the 13  inner engines (i.e. change the angle of the thrust) will eliminate a common source of problems and significantly reduce TVC related hardware.

A major design change to the vehicle will also get its first test on this flight. A vented ring was added between the stages to  allow engines on the Starship to start firing while the stages are still connected. This “hot staging” should increase the payload capability by about 10%. This technique has been used on Soviet/Russian launch systems but never before on America launchers.

The Starship program is attracting massive coverage from a wide array of professional and volunteer reporters. Here are links to some articles of interest and video report sites.

See also the SpaceX Starship report, which is published by NewSpace Global and for which I was the primary author. The initial version came out in March 2023 and then we updated it in May to include coverage of the first flight test.

==================

** SpaceX Falcon 9Currently aiming for 20 flights per booster

The Falcon 9 (F9) has become one of the most successful launch systems ever developed. As of the date of this posting, there have been 282 total F9 launches starting with the first flight in 2010. F9 and the Super Heavy have flown 83 times so far in 2023 and may reach close to 100 for the year. The goal for 2024 is 144 flights, or 12 per month.

Reusability has played a big role in its success. In those 282 launches, the booster has landed 245  times and 217 used a first stage booster that had flown previously.

So far, a F9 booster has achieved 18 flights and should fly at least 20. SpaceX appears to have followed a pattern in which after achieving each additional set of five flights, a  deep examination of the vehicles is made to check for any signs of fatigue and degradation in the structures and components. Whether booster reuse will extend beyond 20 will depend on another such evaluation.

A Falcon 9 first stage booster landed on the A Shortfall of Gravitas droneship following the launch of Starlink satellites on Nov.3.2023. This was the 18th launch and landing of the booster. Credits: SpaceX

A F9 payload is protected during launch by a nosecone composed of two fairings that split and fall away shortly after stage separation. The F9 fairings are now routinely recovered and reused after parachuting back to the sea. Initially, SpaceX aimed to catch fairings in a large net extended above a ship but this turned out to be more difficult than hoped. Fortunately, fairings recovered after floating on the sea showed far less damage from salt water than expected. After some design modifications to fully eliminate water effects, fairings are now routinely recovered from the ocean, refurbished and reused, saving several million dollars over construction of a new set of fairings.

SpaceX recovery vessel Doug retrieves a fairing half from Atlantic waters following a launch of Starlink satellites on Nov.3, 2023. The fairing was on its 13th mission. Credits: SpaceX

Note also that Dragon Crew/Cargo space capsules have also been reused. The current Dragon II capsules have been designed to re-fly up to 15 times.

** Stoke SpaceSecond stage prototype successfully hops.

Stoke is developing an fully reusable two stage vehicle called Nova that will carry 7 ton payloads to LEO. Though much smaller than Starship, the goal is to achieve low cost to orbit via 24 hour turnaround and a high number of flights per vehicle. To accomplish this goal, their vehicle design uses an innovative approach to the most difficult challenge of full reusability: a second stage that can take a substantial payload to orbit and then reenter the atmosphere and execute a powered soft landing.

A space capsule like a SpaceX Dragon uses a heat shield over its “bottom” to protect the vehicle from the high temperatures generated as it is slowed by atmospheric drag. The capsule’s gumdrop shape and low center of mass keep the shield facing forward and no dynamic piloting is required. Eventually the capsule slows to the point that it simply falls through the lower portion of the atmosphere. The capsule deploys parachutes for the final phase of the descent and landing. (The Shuttles similarly used heat shields but employed their aerodynamic surfaces, i.e. the wings, to help reduce speed and glide to a landing.)

The Stoke second stage also uses a capsule-like heat shield during re-entry. Unlike the ablative materials typically used for capsule shields, the Nova upper stage will use an actively cooled metallic shield. In addition, rather than deploying parachutes for the final phase of speed reduction and landing, the vehicle is slowed and landed via the thrust of an array of combustion chambers set along the outer rim of the shield. During ascent, these same thrusters fire to send the upper stage into orbit after it separates from the first stage booster.

Stoke recently carried out a successful test vertical-takeoff, vertical landing (VTVL) “hop” of a second stage prototype: Update on Hopper2: The Hopper Has Landed | Stoke Space – Sept.17.2023.

And the company subsequently obtained a substantial investment that will enable development of the first stage of Nova: Stoke Space Announces $100 Million in New Investment | Stoke Space – Oct.4.2023.

The goal for the debut of Nova is 2025: Stoke Space hops its upper stage, leaping toward a fully reusable rocket | Ars Technica – Sept.18.2023.

==================

Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
A Starship Waits, Chandrayaan-3, Private Spaceflight Paths
Vol. 18, No. 3, Oct.23, 2023

Space Frontier Foundation Award for NewSpace Journalism

==================

** Relativity Space –  Terran-R with reusable first stage to fly in 2026

Relativity Space aims to begin launching the mid-lift Terran R from Launch Complex 16 at Cape Canaveral in 2026. The vehicle design resembles the Falcon 9 with a reusable first stage that lands downrange on a sea platform and an expendable upper stage. Initial goal is 20 flights per first stage unit. The vehicle will take as much as 23,500 kg to Low Earth Orbit (LEO).

On left stands a stacked Terran R rocket with both stages and nosecone fairings. On left is the reusable first stage alone. Credits: Relativity Space

A September update marked  the following milestones :

Broke new ground at the A-2 test stand
Completed our fifth Aeon R thrust chamber assembly campaign, bringing us to 43 hot fires to date.
Shipped and mounted our Aeon R powerpack: the first integrated test article that will be hot-fired on our new dual bay stand.

** Rocket LabElectron first stage recovered from launch; Neuron development underway

Rocket Lab is pursuing two reusability projects. They are progressing with a reusable first stage for the Electron small payload launch system while in parallel they are developing the reusable Neutron launch system for larger payloads.

Initially, Rocket Lab intended for a helicopter to use a hook to grab the parachute of an Electron booster and return it to land, preventing any contact with the sea. One attempt to do this briefly succeeded in snagging a booster’s parachute but it was then quickly detached due to signs of excessive stress. The booster went into the ocean but it floated and was recovered. Similar to the SpaceX experience with fairings, Rocket Lab found little sea water damage to stages and decided to eliminate the helicopter snag and let the boosters fall softly into the water. In July of 2023, Rocket Lab successfully recovered an Electron rocket booster after it was deliberately landed onto the sea.

See this video for a description of a Electron booster’s return and recovery.

So far, no booster has re-flown but they did successfully reuse an engine from a recovered booster.

Progress on development of the reusable Neutron rocket vehicle is proceeding well according to the company. The Neutron has a reusable first stage with an alligator style nosecone with hinged fairings that open to release the payload.  An expendable second stage is attached to the payload for reaching orbit. The hinges close and the stage returns for a powered landing. The Neutron will place up to 13,000 kg into LEO.

An artist rendering of a Neutron rocket first stage deploying a payload attached to a propulsion stage to reach orbit. Credits: Rocket Lab

Rocket Lab will use a former Virgin Orbit facility in Long Beach, California to build the Neuron rockets.

First launch of Neutron could be as early as 2024: Peter Beck pushes toward a Neutron debut in 2024, but acknowledges challenges | Ars Technica – Aug.18.2023.

** Blue Origin New GlennLots of work underway at the Cape

Blue Origin seldom provides updates on the progress in development of the heavy-lift New Glenn launch system. However, outside observers (e.g. here) have reported that a great amount of activity has been happening this year at the Blue Origin facilities at Cape Canaveral. These facilities include a large factory complex, testing sites, and Launch Complex 36 (LC-36).

The first-generation NG will consists of a reusable booster and an expendable upper stage. For the longer term, a reusable upper stage is in development. The seven-meter diameter and 98-meter height will make it one of the largest rockets ever built. The first stage is powered by seven BE-4 engines burning liquid natural gas and oxygen propellants. BE-4 engines also power the ULA Vulcan rocket’s first stage. The NG booster will land on a ocean platform.

The upper stage has two BE-3U engines, which are vacuum optimized variants of the BE-3 engines used on the suborbital New Shepard vehicle (see below). These engines use liquid hydrogen and oxygen propellants.

It’s believed that Blue is aiming to fly the first New Glenn by late 2024 but this obviously could slip.

** Sierra SpaceAssembly of first Dream Chaser cargo vehicle completed

The first of the reusable Dream Chaser lifting-body vehicles has been assembled and will soon “ship to NASA’s Neil A. Armstrong Test Facility in Ohio for environmental testing“: Today Sierra Space Introduces Tenacity | Sierra Space – Nov.2.2023

A Dream Chaser will launch atop an expendable ULA Vulcan rocket for missions to low earth orbit (LEO). After servicing the ISS or carrying out other tasks, the Dream Chaser will return in a manner similar to the Space Shuttles:

Harnessing cutting-edge technology, Dream Chaser showcases its mettle by safely withstanding temperatures exceeding 3,000 degrees during re-entry, all while being cool to the touch mere minutes after landing. The incorporation of the most advanced autonomous flight system, ensuring a minimum 15-mission lifespan, marks a monumental leap forward in space transportation.

The company currently has a contract with NASA for 7 cargo resupply missions. These include carrying experiment materials, waste, and other items back to earth.

Development of crew capable versions of Dream Chasers, referred to by the generic name DC-200, appears to be a long term priority for Sierra. These could carrying people to and from the ISS as well as commercial space stations such as Orbital Reef, for which Sierra is a co-developer.

See also

** Suborbital space tourismVirgin Galactic and Blue Origin updates

There are currently two reusable suborbital rocket systems that have flown paying “spaceflight participants“.

*** Virgin Galactic on November 2, 2023 flew the VSS Unity reusable rocket plane on its fifth operational commercial flight: Virgin Galactic Completes Sixth Successful Spaceflight in Six Months | Virgin Galactic – Nov.2.2023.

The flight carried three paying participants, two pilots and an “Astronaut Instructor”. Two of the participants, Alan Stern and Kellie Gerardi, were scientists who each carried out some experiments during the 3 minutes of weightlessness.  See Stern’s reports about the project and the flight. This article describes the tests they did: Virgin Galactic Flies Science Experiments to the Edge of Space | Universe Today – Nov.15.2023.

Such flights begin with the White Knight vehicle carrying the space plane to an altitude of about 16 kilometers and then releasing it. The space plane fires its hybrid rocket motor, which can send the vehicle to an altitude of 85 to 90 kilometers. This exceeds the 80 km border to space as defined by the USAF.

Previously, the company had said it would fly Unity monthly while developing in parallel the next-generation Delta class vehicles. However, the company recently announced that it would phase out the current flight program in 2024 and focus its limited manpower and resources on development of the Delta-class vehicles. About 15% of the workforce was laid off. The  much higher flight rate enabled by the Delta vehicles is essential if the company is to remain financially viable.

The Delta-class vehicles can carry up to six customers, fly twice per week, and require lower maintenance costs than the current vehicle. The company is aiming for flight operations by 2026.

*** Blue Origin developed the New Shepard rocket to learn how to do vertical takeoff and landings and to use it for suborbital tourism and science missions. The vehicle includes a capsule atop a booster stage, which is powered by the liquid hydrogen/liquid oxygen BE-3 engine. The booster’s engine fires for about 110 seconds and then the booster and capsule separate at around 40 kilometers in height. Both continue upwards  and exceed 100 kilometers before they begin to fall back to earth. The booster restarts its engine and makes a powered soft landing. The capsule returns for a soft landing with parachutes. A solid rocket fires just before touching down to soften the impact.

Following a series of test flights over several years, the first crewed flight happened on July 20, 2021. This was followed by an uncrewed flight with commercial payloads aboard and then there were 5 flights with paying passengers by August 4, 2022.

A New Shepard booster failed during a flight on Sept. 12, 2022 . The capsule payload included a set of experiments but no people. The capsule successfully fired its abort motor to separate from the booster and then landed safely with its parachutes. Blue Origin announced in March 2023 that the failure had been traced to a structural fatigue flaw in the nozzle of the New Shepard’s engine. They were implementing a fix and  expected “to return to flight soon, with a re-flight of the NS-23 payloads“.

However, as of November 2023, flights have not resumed. No explanation for the delay has been given and there is speculation that the company may discontinue the service to focus its manpower and resources on development of the orbital New Glenn rocket: How long will Jeff Bezos continue to subsidize his New Shepard rocket? | Ars Technica – Nov.3.2023.

** PLD Space – Successful suborbital test flight

The PLD Space Miura-1 suborbital lifts off on Oct.7.2023. Image credits: PLD Space.

This Spanish company has been developing a reusable launch system for several years. On October 7, 2023 the company carried out their first successful test flight of the  prototype suborbital rocket,  MIURA 1. The rocket flew the planned trajectory to an apogee of 46 kilometers. (Range safety issues led to lowering the apogee from a previous goal of 80 km.) A payload of memorabilia items was released and the rocket’s parachute opened as planned. The vehicle reached the sea service in one piece but high lateral winds caused the vehicle to hit the water at an excessive speed that “caused one of the two main tanks to rupture, filling with water and sinking the vehicle“.

Based on lessons learned from this test, the company will proceed with development of MIURA 5, “which will make its first flight in 2025 from the European spaceport CSG, in Kourou (French Guiana), and will place satellites of up to 500 kg in polar orbit and up to one ton in equatorial orbit“. The first stage of Miura 5 will be recovered via parachute return and be reused. Commercial operations will then begin in 2026 and their goal is to average 30 launches per year subsequently.

More details at

Below is a video of the launch and a press conference.

** Pangea AerospaceDeveloping aerospike engines

Pangea is a Spanish company developing reusable aerospike propulsion systems. Aerospike engines can provide stable, efficient thrust at full atmospheric pressure and in vacuum while conventional engines need different nozzles for the two regimes. So theoretically aerospike engines would be ideal for single-stage-to-orbit vehicles but this has yet to be proven in practice.

Pangea has demonstrated a Methane-Liquid Oxygen aerospike engine:

Check out their collection of videos providing an introduction to aerospace propulsion.

** Jess SponableRLV history and a new P-2-P hypersonic rocket vehicle project

Jess Sponable discussed the history and current state of reusable rocket vehicles on a recent episode of The Space Show. While with the Air Force, DARPA, and other organizations, Sponable participated in several reusable rocket vehicle projects including the DC-X, X-33, and X-34.

Sponable also discussed his recent work with New Frontier Aerospace (NFAero), a startup company developing a rocket powered lifting body vehicle for long distance, point-to-point flights at Mach 8. The vehicle takes off and lands vertically and can reach any place on earth within two hours. It will be powered by the Mjölnir, a “3D-printed, full-flow staged combustion engine“.

Mojlnir full flow staged combustion engine. Credits: NFAero and PRLog

More about Mjölnir amd MFAero:

** Venus Aerospace Hypersonic flight with rotating detonation rocket engine

Venus is another company pursuing global hypersonic transportation. They say their Stargazer would reach anywhere in the world in one hour. It would be powered by a rotating detonation rocket engine (RDRE) currently in development.

Stargazer will take off from a primary airport with jet engines, then when away from city-center, our rocket engine will propel passengers gently to 170,000 feet and Mach 9, crossing 5000 miles in 1 hour. San Francisco to Japan. Houston To London. All with a 2-hour turn-around.

The company has raised more than $20M and investors include Airbus, Draper Associates, and several other firms.

See this video for a good intro to RDRE: How NASA Reinvented the Rocket EngineReal Engineering.

** Astrobotic Zodiac flies again.

Astrobotic acquired Masten Space last year after it ran into a cash flow crisis that resulted in bankruptcy: Astrobotic Acquires Masten Space Systems | Astrobotic – Sept.13.2022.

Astrobotic promise to

continue to offer and develop [Masten’s] unique test capabilities, including providing VTVL test flights for commercial and government customers. Astrobotic plans to expand these test flight offerings with the development of the next-generation Xogdor rocket, which will offer higher altitudes, longer missions, and supersonic flight for suborbital payload testing.

NASA’s Flight Opportunities has sponsored a number of projects that took advantage of VTVL flights for applications such as testing lunar landing sensors and guidance systems. In October the first flight campaign since the Astrobotic acquisition was successfully carried out with the Xodiac rocket, which has flown over 150 times. The flight test experiments were funded by NASA.

Astrobotic, a leader in vertical-takeoff, vertical-landing (VTVL) reusable rockets, successfully completed a flight test campaign for the University of Central Florida (UCF) last week at the company’s facility in Mojave, CA. The campaign consisted of four flights aboard Astrobotic’s Xodiac VTVL rocket to test UCF’s Ejecta STORM laser sensor, which was developed by Dr. Phil Metzger to study plume-surface interactions (PSI) between a rocket plume and lunar regolith. This test campaign will provide valuable data for researchers, including Dr. Metzger, as they seek to better understand PSI for humanity’s return to the Moon under NASA’s Artemis program.

Here is a  video of the test.

University of Central Florida researchers tested an instrument designed to measure the size and speed of surface particles kicked up by the exhaust from a rocket-powered lander on the Moon or Mars. The four tethered flights on Astrobotic’s Xodiac rocket-powered lander took place in Mojave, California, from Sept. 12 through Oct. 4, 2023. Researchers tested the Ejecta STORM technology’s integration with a lander and operation in flight conditions that simulated the plume effects of a lunar lander.

** Exos AerospaceTests engine for suborbital vehicle to fly in 2024

Exos Aerospace, a descendant of John Carmack’s Armadillo Aerospace, continues to develop reusable suborbital vehicles. The company is based in Greenville, Texas and recently test fired an ethanol engine mounted in a tethered rocket. A Purdue student group collaborated in the test:

Exos Aerospace BLK3 Engine Tests with Purdue University Sept 13 2023:
“Exos Aerospace, a Greenville-based company, tested an engine for a rocket as they prepare for a launch in 2024.” -NBCdfw.com

“a team from Purdue University was on hand for the rocket test Wednesday, performing a lunar lander thermal experiment as part of the test.” -dallasinnovates.com

““This is a reduced throttle run,” said John Quinn, co-founder and CEO of Exos Aerospace, according to NBC 5 DFW. “It’ll be 60% throttle on the first test and 70% on the second test” -dallasexpress.com

North Texas commercial spaceflight tests rocket engine (Article and video)
https://www.nbcdfw.com/news/local/nor…

Other Exos news items:

Exos Aerospace BLK3 Hold Down Test and Hover Test.
0:01 BLK3 Tether Test
0:45 BLK3 Hover Test

We’re your expedited space delivery expert! You can find us at: www.exosaero.com
Booking now, SPACEavailable…
Exos Aerospace is a Preferred Partner with Precious Payload Inc. to facilitate booking.
https://preciouspayload.com/launch-sc…

https://youtu.be/Ezj4DIFVlHY

** Chinese RLV development iSpace Hyperbola-2 rocket does vertical takeoff and landing flight

The Chinese government program and several Chinese companies are pursuing rocket reusability. Some of these projects include:

On November 2nd, iSpace flew its Hyperbola-2 methane fueled test stage to 178 meters and then came back down for a soft landing: China’s iSpace launches and lands rocket test stage – SpaceNews. Such VTVL tests were flown by the DC-X in the early 1990s, by Masten and Armadillo in the 2000s, and by SpaceX with the Grasshopper vehicle to master vertical takeoffs and landings.

The company is aiming for a SpaceX Falcon 9 type of system with a reusable first stage and expendable upper stage.

** Other reusable rocket related projects:

=== Amazon Ads ===

When the Heavens Went on Sale:
The Misfits and Geniuses Racing to Put Space Within Reach

===

Space Race 2.0:
SpaceX, Blue Origin, Virgin Galactic, NASA,
and the Privatization of the Final Frontier

Interviews with Commercial Space Pioneers

Check out Sean Mahoney‘s interviews of Commercial Space Pioneers in a series of videos posted by the Space Frontier Foundation. Here is a sampling:

** Gary Hudson recounts his lifelong efforts to develop low cost space transportation:

** Charles Miller, currently the CEO of Lynk, talks about the space legislation and policy initiatives pushed by activists that enabled the development of commercial space.

** Lori Garver discusses her time as a NASA Deputy Administrator and the development of NASA’s commercial crew program.

=== Amazon Ads ===

Escaping Gravity:
My Quest to Transform NASA and
Launch a New Space Age

===

When the Heavens Went on Sale:
The Misfits and Geniuses Racing to Put Space Within Reach

Videos: A SpaceX overview + Starship reports

Here is a sampling of videos about SpaceX and the Starship project.

** Public presentations about SpaceX are usually provided by Elon Musk or Gwynne Shotwell. However, here is an excellent overview of the company given by Kiko Dontchev, Vice President of Launch, at the Summit At Sea event last May.

Curious how SpaceX went from 13 launches in 2019 to pacing for 100 in 2023? As VP of Launch at SpaceX, Kiko Dontchev goes into work every day with the simple goal of making space travel as accessible as air travel, and he is well on his way. In this talk, Kiko will dive into SpaceX’s exponential growth approach, Elon’s problem-solving algorithm, and becoming the most prolific launcher of all time.

** Several new media sources have risen in the past couple of years that report extensively on SpaceX Starship related activities. A sampling of these include:

Here, for example, are three reports on recent Starship developments:

** The design, development, and commercial potential of Starship are presented in the SpaceX Starship report, for which I was the primary author. Initially published by NewSpace Global in March 2023, we updated it in May to include coverage of the first flight test.

==================

Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Starships’ Second Flight, Blue HLS, Return Sustainably
Vol. 18, No. 2, July 16, 2023

Space Frontier Foundation Award for NewSpace Journalism

==================

The Space Show this week – Aug.1.2023

The guests and topics of discussion on The Space Show this week:

1. Tuesday, Aug. 1, 2023; 7 pm PST (9 pm CST, 10 pm EST): We welcome the CEO of the developing Las Vegas Spaceport, Rob Lauer. For more information see https://lasvegasspaceport.org.

2. Hotel Mars – Wednesday, Aug. 2, 2023; 1:00 pm PST (3:00 pm CST, 4:00 pm EST): Rick Fisher will talk with John Batchelor and Dr. David Livingston about China space developments.

3. Friday, Aug.4, 2023; 9:30-11 am PST (11:30 am-1 pm CST, 12:30-2 pm EST): We welcome Dr. Ethan Siegel for updates and news on his new project.

4. Sunday, Aug.6, 2023; 12-1:30 pm PST (2-3:30 pm CST, 3-4:30 pm EST): We welcome back Robert (Sam) Wilson of the Aerospace Corp on his paper [on] Space Force budget and priorities.

Some recent shows:

** Sunday, July.30.2023Gary Barnhard discussed

his idea about using the ISS as an SSP [Space Solar Power] research platform when it is retired. Gary’s presentations and papers are on our blog for you to read and follow during this program. He suggested additional uses for the ISS upon retirement but SSP was his main focus.

** Friday, July.28.2023Matt Shindell  of the Smithsonian Air and Space Museum  discussed “his new Mars book [For The Love of Mars (Amazon commission link)] which focuses on the role Mars plays in human culture dating back to the ancients“.

** Hotel Mars – Wednesday, July.26.2023Douglas Messier gave John Batchelor and Dr. David Livingston an update “on Starship, preparations for the next launch, improvements being made and possible FAA delays“.

** Tuesday, July.25.2023John Jossy discussed “his blog posts [regarding] ISDC, sex in space and the need to have the gravity prescription determined, commercial companies seeking to spin or create art gravity on a commercial basis and more“.

** Sunday, July.23.2023 – John Strickland gave

an in-depth discussion on terraforming Mars. Don’t forget to check out his information sheet on the blog and his publication list on his bio page.

** Friday, July.21.2023Patrick O’Neill talked about the “the ISS National Lab, who uses it, how it works, a national lab for the private stations, research and more“.

** Thursday, July.20.2023Rand Simberg was a

special guest for this special Space Show July 20th program. We talked about multiple topics including going to the lunar S. Pole or returning to Tranquility base. Starship was a main top throughout our discussion. The need for the gravity RX for human settlement, the renewal of the learning time extension coming due in Oct and much more.

** Hotel MarsWednesday, July.19.2023Stephanie Thomas of Princeton Satellite Systems gave John Batchelor and Dr. David Livingston an update

on progress with both fusion energy and fusion propulsion for space. Stephanie talked about PSS and their work on a direct drive fusion rocket engine for propulsion, she mentioned timelines plus she mentioned other fusion methodology. We also talked about research for fusion for space and fusion for electricity here on Earth.

** See also:
* The Space Show Archives
* The Space Show Newsletter
* The Space Show Shop

The Space Show is a project of the One Giant Leap Foundation.

The Space Show - David Livingston
The Space Show – Dr. David Livingston

=== Amazon Ads ===

When the Heavens Went on Sale:
The Misfits and Geniuses Racing to Put Space Within Reach

===

Critical Mass (A Delta-v Novel)