Category Archives: Space transport roundup

Latest on all means of traveling to, from and in space.

Space transport roundup: Part 3 – SpaceX – Oct.27.2021

This roundup provides a sampling of recent articles, videos, and images dealing with space transport (find previous roundups here). The roundup is split into three postings:

  • Part 1: Orbital launches
  • Part 2: Light orbital lift development, suborbital, space transport articles, news, videos, etc.
  • Part 3: SpaceX Falcon 9, Dragon, and Starship

Falcon  9 and Dragon

The SpaceX Falcon 9 launch rate slowed considerably this past summer. There were 20 missions flown from January through June but none in July and just three from August till the middle of October. There were several factors leading to the slowdown, the primary one being the completion by June of the initial phase of the Starlink constellation buildup. (See links at bottom here for latest info on the Starlink project). Thirteen of those 20 missions each sent 50+ Starlink satellites into low earth orbit. Those Starlinks went into +/- 55 degree inclination orbits where they can provide Internet services to people living in the mid-latitudes.

The next phase of the Starlink project requires launching satellites to polar orbits to enable full global coverage. It appears most of these polar missions will be launched from Vandenberg AFB in California.  The first polar orbital launch lifted off on September 14th (see below).  These second-phase satellites carry laser communications systems that enable in-space intra-constellation links, greatly reducing the latency of packets transmitted between far distant points on the globe. Completing development of the laser system and ramping up its production took extra time, which also contributed to the delay in launches.

The F9 launch rate is now picking up again with ten missions scheduled for the remaining months of 2021. A NASA crew of 4 is set to head for the ISS this Sunday, Oct.31.2021.

Here are items about the three F9 missions for August and September:

** Sept.16: Inspiration4 mission success. The first all-civilian spaceflight mission successfully sent four non-professional astronauts into orbit for four days and returned them safely to Earth. It was very successful at public outreach as well. The mission gained widespread media attention, most of which seemed quite positive.  A five episode special series on Netflix presented captivating profiles of the space travelers and followed their activities during training, the launch, in-orbit and through the return to a splashdown and recovery at sea. Funded by Jared Isaacman, the project surpassed his goal of raising $200M for St. Judes Children’s hospital. (Helped by a $50M contribution of Elon Musk and by Issacman’s own $100M.)

Reports, articles, and commentary:

** Inspiration4 inspires plans for multiple civilian flights per year on SpaceX vehicles.

*** Sept.14: Falcon 9 launches first Starlink mission from Vandenberg. The first stage booster successfully landed after its 10th flight. The 51 satellites deployed by the upper stage will go into orbits at 70 degree inclination with respect to the equator. Over 1700 satellites of the initial Starlink shell were launched from Cape Canaveral into 53 degree inclinations that allow Internet service to a band of the earth between +/- 55 degrees latitude. This West Coast launch began the filling of a second shell that will provide coverage to the polar regions. These are the first Starlink satellites to carry laser systems for in-space communications. This will allow the sats to connect directly with each other. Ground stations are few and far between in the polar regions so a laser network will provide for in-space data transfers to whichever satellite is currently above a ground station. Eventually lower latitude shells will also be replaced with sats equipped with laser-comm systems since in-space comm is faster than transversing optical fibers and multiple routers to reach a particular destination.

** Aug.29: SpaceX Falcon 9 launches Cargo Dragon to the ISS with nearly 2180 kg of supplies, equipment, and research materials. The rocket lifted off at 3:14 am EDT from NASA’s Kennedy Space Center. The booster B1061, on its fifth flight, landed successfully on the new ocean platform named, Shortfall of Gravitas. The spacecraft docked to the station on the morning of Aug.30th.

** Third SpaceX Commercial Crew Mission set for end of October. Crew 3 includes NASA astronauts Thomas Marshburn, Kayla Barron and Raja Chari and German ESA astronaut Matthias Maurer.  This  mission will actually be the fifth Crew Dragon flight with people on board when one includes the CCP demonstration mission plus the Inspiration 4 civilian flight discussed above.

** New ocean-going ships added for Crew Dragon recovery ops and for first stage landings:


Though there were no Starship test flights since the previous roundup at the end of July,  a tremendous amount of activity has taken place at the Boca Chica production and launch facility  in preparation for future Starship missions. These activities can be divided among the following sites and hardware systems:

  • Orbital Launch Site (OLS):
    • The OLS includes a launch integration tower (note that a second one is planned as well), a launch mount, and a vast ground infrastructure that includes huge upright cryogenic fluid tanks, a maze of piping, multiple fluid handling and cooling systems, electrical power distribution systems, etc. Substantial progress has been made in all of these areas.
    • Orbital Launch Integration Tower (OLIT):
      • Fitting out of the OLIT has continued night and day since the final segment was set in place by a huge crane in July. The OLIT will not only provide propellants and power to the Starship and Super Heavy booster but it will also stack the former onto the latter for launch and then catch each of the two during landings.
      • Quick Disconnect arm (QD) was installed at a level near the joint between the Starship and the Booster. It will be used to transfer propellants to and from the vehicle as well as stabilize the combo during high winds.
      • Mechazilla, as tagged by Elon Musk, was installed this past week onto the OLIT. This mechanism includes long arms  and moves up and down on the OLIT. It will lift, raise and stack a booster onto the Launch Mount and then stack a Starship on top of the booster.  It also will work with the QD to hold the combo in place. Furthermore, the “Chopsticks” will catch a booster during its landing and then catch a Starship to stack upon the booster.
    • Launch Mount:
      • The Starship/Booster combo will sit atop the Launch Mount until the 29 Raptor engines (33 on a later design) fire and send it into space. The Launch Mount consists of a circular structure atop six tall heavy pillars. The mounting structure provides a number of important duties including the feeding of propellants up till the moment of liftoff when the feed-lines must quickly disconnect, hold-downs to keep the rocket securely upright until liftoff when they must quickly and uniformly let go of the booster, electric power connections, etc. Work on the circular mount structure has been going on continuously from the time it was at the production site to the current position at the launch site, where it is enveloped in metal tubular scaffolding.
    • Orbital Tank Farm:
      • The tank farm consists of eight vertical tanks for storing liquid oxygen, liquid methane, and water. The tanks were built by SpaceX in a manner very similar to the booster and Starship from cylinders of stainless steel. Each of the eight tanks has now been encapsulated by an insulating shell, also built by SpaceX.
      • There are also several other tanks on the OLS for additional fluid handling and storage.
“Starbase under construction” – Elon Musk, Oct.22.2021
  • Starship 20:
    • Thermal protection tiles:
      • Black ceramic tiles for thermal protection during reentry from orbit were installed on the “belly” side of Starship 20 while it was in the High Bay but many were marked with tape to indicate that they needed adjustment, replacement, and/or testing. After the vehicle was moved to a mount at the launch site, these problem tiles were dealt with by workers lifted via mobile elevated work platforms. This was the first time a complete set of tiles were attached to a Starship. A handful of tiles have fallen off during tank pressure and engine tests but Elon has indicated such problems were expected.
    • Raptor installation:
      • Raptor engines, both the sea-level and vacuum optimized types, have been installed, removed, and re-installed a few times. (The Starship uses three Raptors optimized for sea-level pressure and three for vacuum.)
    • Tests:
      • Pressure testing of the propellant tanks.
      • Structural test with hydraulic actuators pressing on the bottom of the vehicle during pressurization of the tanks.
      • Firing tests of the sea level and vacuum Raptors (see video below).
      • On October 21st, a vacuum-optimized Raptor was fired for the first time outside of the company’s McGregor, Texas engine test site.
  • Super Heavy Booster 4:
    • Preparation of Booster 4 has been quite intense. After the booster and Starship were briefly mounted atop one another on the Launch Mount, the booster was moved back to the Build Site for additional work and then returned to the OLS where it currently sits atop a temporary mount.
    • Engines on Booster 3 were test fired back in July but there has not yet been a test firing of engines installed on Booster 4. (Booster 3 was partially disassembled and the lower portion currently remains standing at the launch site.)
  • Build site:
    • Starship 21:
      • Stacking of the segments is nearly complete in the Mid-Bay hangar.
    • Starship 22:
      • Several of the segments have been assembled and await stacking.
    • Boosters:
      • Stacking of Booster 5 is nearly complete in the High Bay hangar. Segments for Booster 6 have been observed.
    • New Wide Bay:
      • Construction of a third hangar is proceeding apace with the first metal frame pillars for the walls are being put in place following the completion of the foundation.
      • This hangar will be as tall as the high bay but roughly twice as wide.
    • High Bay:
      • The penthouse dining/bar facility on top appears nearly complete with the installation of large clear glass walls to allow visitors to see the facilities and watch launches and landings.
      • Staircase segments have been built and will apparently be stacked along the side of the building and will probably enclose the elevator, which currently rises in the open air.

To help meet all of these goals for Boca Chica, the company initiated a surge of workers by bringing them in from other facilities:

** SpaceX Starbase, Tx Flyover (October 18, 2021)RGV Aerial Photography.  A recent view from above the Boca Chica site; includes helpful labels on the many features of interest.

***** Aug.1: Starbase – July 2018 vs Aug.2021RGV Aerial Photography – A look at how the Boca Chica site has changed in the past three years.

** Status of development of Starships and boosters is displayed in this infographic posted by Brendan Lewis:

** SpaceX video shows highlights of activities at the Boca Chica spaceport:

** A timeline for Starship 20 and Booster 4:

** Date of first Starship orbital test flight remains uncertain. The intense effort at Boca Chica has paid off in terms of preparation for a test launch. Elon Musk on Twitter:

If all goes well, Starship will be ready for its first orbital launch attempt next month, pending regulatory approval

However, as he indicates, the FAA may not license a launch for at least a few months (see FAA environmental review discussion below). A NASA project to use special cameras to observe a Starship’s thermal protection surface during reentry is expecting a launch in March. Whether this will be the first Starship orbital launch is not said.

** Pace of Starship development now depends on the FAA. The Commercial Space Transportation wing of the FAA is currently reviewing whether the environmental impact study (EIS) that was approved several years ago for the SpaceX launch facility at Boca Chica Beach, Texas remains valid. The earlier EIS was based on Falcon 9 launches from the site while SpaceX subsequently switched the spaceport completely to Starship/Super Heavy Booster operations.

The FAA could decide that no revisions are needed, or that some revisions are needed, or that a new enviro study must be completed from scratch. A whole new study could means years of delay. However, from a draft assessment released in September (see links below), such an option seems unlikely. If the FAA instead requires that some number of elements of the old study must be redone or that some elements must be added, that might still mean months of delay before any test flights can be carried out.

Recently, the FAA held hearings in which members of the public could express their views on the Boca Chica project. The pros greatly out-weighed the cons but we won’t know for weeks or months whether issues brought up at the hearing motivated additional requirements on SpaceX.

Links to items about the FAA regulatory situation:

Note that according to the FAA draft reviews, the number of Starship/Super Heavy launches from Boca Chica would be limited to five per year. So SpaceX’s goal of eventually making daily Starship flights to orbit will await the completion of the two offshore launch/landing platforms, Phobos and Deimos.

** Meanwhile, firing tests of the Raptors on the Starship, and presumably soon the Booster, have started:

*** Full set of 29 Raptors have been installed on Super Heavy Booster #4:

Since August some engines have been removed and others installed.

*** Supplying propellants to ravenous Super Heavy Booster engines requires a monumental maze of piping and control lines:

**** Starship SN20 stacked atop Super Heavy Booster #4. The stacking lasted only few hours for fit checks and a photo op. However, it was a great milestone on the road to eventual launch. Later, Booster 4 was moved from the Launch Mount to a separate stand so that work could continue on the Mount.

More Tweets from Elon:

  • Aug 6: “An honor to work with such a great team
  • Aug.6 – Michael Scheetz: “Nice! How many heat shield tiles does Starship 20 need in total to survive reentry?
    • Elon: “It is ~98% done, but the remaining tiles are unique shapes requiring machining

  • Aug.6: “There is a reason no fully reusable orbital rocket has been built – it’s an insanely hard problem. Moreover, it must be rapidly & completely reusable (like an airplane). This is the only way to make life multiplanetary. Efficiencies of scale is why Starship is so large.

  • Aug.6: Elliott – “Will the tanks of the Ship and Booster be stretched over time, like how Falcon 9’s were?
    • Elon: “Inevitably
  • Aug.6: “Over time, we might get orbital payload up to ~150 tons with full reusabity. If Starship then launched as an expendable, payload would be ~250 tons. What isn’t obvious from this chart is that Starship/Super Heavy is much denser than Saturn V.
  • Aug.6: Sheetz – “What’s next after destacking? Pressure tests?
    • Elon: “4 significant items:
      – Final heat shield tiles for ship
      – Thermal protection of booster engines
      – Ground propellant storage tanks
      – QD arm for ship
      2 weeks.

  • Oct.20: Pranay Pathole – “How much tons of payload could Starship deliver to orbit if it were to do an expendable launch? Could it deliver ~300 tons to orbit expendable? That’d be like double of Saturn V!
    • Elon: “Well-optimized Starship would do ~250 tons to orbit as expendable & ~150 tons fully reusable
  • Oct.21 : Toby Li – “Looks like some TPS tiles fell off during the static fire. Do you think this will be a major issue for the orbital launch or does the team already have a solution?
    • Elon: “No, we expect some tiles to shake loose during static fires

*** Elon Musk interview and tour of Boca Chica facility with Tim Dodd, the “Everyday Astronaut. Below are the three videos in which Musk talks with Dodd as they first walk around the build site and then the launch site. Notes on Musk’s comments are available at Starbase Tour and Interview with Elon Musk | Everyday Astronaut.

** Vertical powered landing can be made safe enough for human passenger flights. Here’s a discussion of whether a vertical landing rocket vehicle like the Starship can be safe for human passengers:  Will Starship Landings Ever Be Safe Enough? — Part 1: Engine Reliability

With three engines lighting on each landing, the required engine reliability could be demonstrated with a high degree of confidence with a string of fewer than 100 nominal landings following fixes addressing engine failures on early flights.

Note that this does not take into account the fact that early crew flights will have a small enough complement that landed mass will be low enough for single engine landings, further reducing engine reliability requirements.

All this suggests that however hard other aspects of Starship may be to human-rate, the landing method is not likely to be a blocker to NASA astronauts landing on Earth with Starship this decade.

Orbital tourist flights with small complements require a similar degree of safety. Passenger counts are likely to increase over time as the system is refined and proven out. Eventual airliner-like reliability may or may not happen, but if it doesn’t, the engines, at least as far as soft failures are concerned, are highly unlikely to be bottleneck.

I imagine that somewhere between a 1:100k and 1:1 million whole flight fatality risk would be low enough for most people to feel comfortable using Starship for point to point transport — the most ambitious use case, in terms of required safety.

This would likely call for somewhere between a 1:3 million and 1:300 million risk due to soft engine failures on landing. On the low end, this calls for engine reliability comparable to the Merlin engine. On the high end, we’re looking at less than an order of magnitude improvement in reliability.

** Recent video reports on Boca Chica activities:

*** Hydraulic Actuator Lifted For Fit Checks on Mechazilla’s Chopsticks | SpaceX Boca ChicaNASASpaceflight – YouTube

A hydraulic actuator, used to move the Chopstick arms, was lifted for fit checks. Meanwhile, thermal insulating foam was spotted on Booster 4 around its QD plate and COPVs. Video and Pictures from Mary (@BocaChicaGal) and Nic (@NicAnsuini). Edited by Jack (@theJackBeyer).

*** Oct.25: Booster 6 Aft Dome Ready for Sleeving | SpaceX Boca Chica NASASpaceflight – YouTube

The aft dome for Booster 6 was readied for sleeving as crews continue to work on Ship 21. Meanwhile, Perlite expansion furnaces were spotted at the launch site. Perlite is used as an insulator between the cryo shells and GSE tanks. Video and Pictures from Mary (@BocaChicaGal) and Nic (@NicAnsuini). Edited by Derek “DK” Knabenbauer (@DKlarations).

*** Oct.24: Ship 21 Nosecone Rolled Out of Production Tent Ahead of Stacking | SpaceX Boca ChicaNASASpaceflight – YouTube

Ship 21’s nosecone rolled out ahead of it being stacked atop its barrel section. Booster 9’s thrust puck was delivered, along with a booster methane transfer tube (aka downcomer). Meanwhile, work on Booster 5, the B2.1 test tank, and Mechazilla’s chopstick arms continued. Video and Pictures from Mary (@BocaChicaGal). Edited by Jack (@theJackBeyer).

**** Oct.23: SpaceX Starship fires up & tower arms go on, NASA to select second HLS, SLS Fully Stacked Marcus House

**** Aug.8: How SpaceX Designed A Heat Shield For The Largest Spacecraft Ever BuiltScott Manley

For the first time we saw the fully assembled Starship/SuperHeavy stack assembled on the pad. This is all designed to put Starship, the largest spacecraft ever built, into orbit, but we also got a really good look at a near complete thermal protection system, and that’s critical to bringing the Starship back from orbit safely.


Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Space Suit Opportunities, Inspiration4, FAA & Starship
Vol. 16, No. 6, September 22, 2021

Space Frontier Foundation Award for NewSpace Journalism


*** Misc SpaceX news, articles, reports, etc.:


Continue to Roundup Part 1.

=== Amazon Ads ===

Space Is Open for Business:
The Industry That Can Transform Humanity


The X-15 Rocket Plane:
Flying the First Wings into Space

Space transport roundup: Part 2 – Light orbital lift, Suborbital, News, etc. – Oct.27.2021

A sampling of articles, videos, and images dealing with space transport from late July till today (find previous roundups here). The roundup is split into three postings:

  • Part 1: Orbital launches
  • Part 2: Light orbital lift development, suborbital, space transport articles, news, videos, etc.
  • Part 3: SpaceX Falcon 9, Dragon, and Starship

** USA – Oct.13: Blue Origin flies William Shatner and three others to suborbital space. The second flight of a New Shepard vehicle with people on board went quite well. The crew included actor William Shatner, who played Captain James T. Kirk on the original Star Trek series, Dr. Chris Boshuizen, a former NASA engineer and co-founder of Planet Labs, Glen de Vries, Vice-Chair, Life Sciences & Healthcare, Dassault Systèmes and co-founder, Medidata, and Audrey Powers, Blue Origin’s Vice President of Mission & Flight Operations.

Shatner was deeply affected by the experience as indicated by his emotion-laden comments just after emerging from the capsule. Check out this transcript: Speech of William Shatner after flying to space on Jeff Bezos’ Blue Origin capsule · GitHub. For example,

What you [Bezos] have done… everybody in the world needs to be in this [capsule]. Everybody in the world needs to see [in tears] … it was unbelievable, unbelievable.”

“William Shatner looks out of the New Shepard windows on NS-18.” Credits: Blue Origin

More about the flight:

**** USA – Aug.26: Blue Origin launches an uncrewed New Shepard to suborbital space. This was the seventeenth flight of a New Shepard vehicle, the fourth in 2021, and the eighth for this particular vehicle.

The vehicle carried

“… a NASA lunar landing technology demonstration a second time on the exterior of the booster, 18 commercial payloads inside the crew capsule, 11 of which are NASA-supported, and an art installation on the exterior of the capsule“.

**** Blue Origin developing reusable second stage for New Glenn heavy lift rocket.

Although Blue Origin has not publicly discussed this effort to build a reusable upper stage for the New Glenn rocket, sources said the company’s primary goal is to bring down the overall launch cost of the New Glenn rocket. The vehicle’s large upper stage, which has a 7-meter diameter and two BE-3U engines, is costly. Making New Glenn fully reusable is necessary for Blue Origin to compete with SpaceX’s Starship launch system.

The tank project is one aspect of the reusable upper stage program, and the other aspect is selecting and finalizing a design for the second stage. Both of these projects, operating within Blue Origin’s Advanced Development Programs unit, are making progress.

Project Jarvis encompasses the tank program, which is intended to rapidly prototype a propellant tank to withstand the rigors of multiple launches and re-entries. The company’s engineers are studying the use of stainless steel as a material for these tanks, as SpaceX has chosen to do with its Starship booster and upper stage. Stainless steel is cheaper and better able to withstand atmospheric heating during re-entry, but it’s about five times heavier than composites.

**** Video updates on New Glenn rocket and the BE-4 engine:

**** Other Blue news:

** Virgin Galactic postpones next SpaceShipTwo flight till mid-2022 to provide time for fixes and enhancements to the vehicles. Virgin Galactic Begins Planned Vehicle Enhancement and Modification Period; Unity 23 Test Flight Rescheduled to Follow Completion of This Program – Virgin Galactic

Virgin Galactic today announced that it will now begin its planned enhancement program for VMS Eve and VSS Unity and will conduct the Unity 23 test flight after this work is complete.

The enhancement program is designed to improve vehicle performance and flight-rate capability for VMS Eve and VSS Unity. In preparation for this work, Virgin Galactic has been performing routine tests and analyses to update its material properties database. This data predicts how materials are expected to perform under certain load and environmental conditions and is used to inform the design and manufacturing enhancements that will support increased flight frequency. One of these recent laboratory-based tests flagged a possible reduction in the strength margins of certain materials used to modify specific joints, and this requires further physical inspection.

As is standard in aerospace test and evaluation practices, Virgin Galactic ships are designed to withstand forces that are substantially higher than those experienced in regular use, providing additional margin and layers of safety. The enhancement program is designed to further increase margins that will enable improved reliability, durability and reduced maintenance requirements when in commercial service. While this new lab test data has had no impact on the vehicles, our test flight protocols have clearly defined strength margins, and further analysis will assess whether any additional work is required to keep them at or above established levels. Given the time required for this effort, the Company has determined the most efficient and expedient path to commercial service is to complete this work now in parallel with the planned enhancement program.

Following the enhancement period, the Company intends to complete the vehicle testing program for VMS Eve and VSS Unity, including the planned research test flight with the Italian Air Force, before starting commercial flights.

**** Virgin Galactic raises ticket prices to $450k for a ride to space. The first commercial flight is now delayed till the second half of 2022 due to a various upgrades for the two SS2 vehicles (“VSS Unity” and “VSS Imagine“) and the WhiteKnightTwo “VMS Eve” carrier aircraft. The modificiations will enable a higher flight rate for the rocketplanes (roughly one month turnaround between flights rather than two months). With the changes, Eve will need major refurbishment every 100 flights rather than every 10.


Virgin Galactic will also begin test flights in the second half of 2022 of VSS Imagine, its first SpaceShipIII vehicle that the company unveiled in March. Colglazier said that work on a second SpaceShipIII vehicle, VSS Inspire, is on hold to focus resources on VSS Imagine, VSS Unity and VMS Eve.

The company is betting its long-term sustainability on a future “Delta class” of suborbital spaceplanes, which would be air-launched from a next-generation aircraft that replaces WhiteKnightTwo. It expects those vehicles to fly more frequently and affordably that current vehicles, allowing the company to increase its flight rate and turn toward profitability.

“The key to our ramp up is really leaning heavily into the Delta class as well as getting motherships that will carry all those spaceships,” he said, declining to provide specifics on production plans and schedules for those vehicles. “Delta class and the new mothership program clearly are important new programs for us as a company and we’ll be aligning our energy towards them.”

Here is a new promotional video:

An extraordinary spaceship design fit for an out-of-this-world experience. Learn how Virgin Galactic’s flight technology is revolutionizing space travel.

*** Controversy arises over an anomaly during SpaceShipTwo Unity’s flight back from space in July when Richard Branson was on board.

**** A possible defect flagged by a a third-party supplier was investigated. The company said on Oct.14th that the issue has been resolved.:

… the Company’s recent inquiry into a potential defect in a supplier component announced on September 10, 2021, […] has been successfully resolved. While the supplied component in question was not on either VMS Eve or VSS Unity, in accordance with safety protocols, Virgin Galactic completed detailed inspections and scans which found all components met quality and safety standards and were ready for flight. The enhancement period is now beginning approximately one month later than anticipated, and commercial service is now expected to commence in Q4 2022.

See also:

** Relativity Space prepares for first launch of Terran 1 rocket. Lift off from Cape Canaveral now set for early 2022.

We’re excited to share that Terran 1 Stage 2 just passed cryo pressure proof and hydro mechanical buckling test on our structural test stand. Up next: Stage 1 structural testing!

Here at Relativity, we’re often focused on the future, but we’re taking a beat to recognize our team’s hard work getting to this critical pre-launch phase. In 12 months, we’ve finalized Terran 1’s architecture, developed a brand new engine, upgraded its material, and grew from 150-500+ employees, all while keeping everyone’s safety a top priority.

Terran 1’s demonstration launch is now set for early 2022 from Cape Canaveral LC-16. While we recognize the wins of today, we will continue working at a breakneck speed, and provide updates along the way—as we prepare to launch the world’s first entirely 3D printed rocket.

To stay up-to-date on the latest Terran 1 updates and exclusives, sign up for our newsletter here:

Another video update: September 2021: Progress at Cape Canaveral

Other Relativity Space items:

** Masten Space begins development of high altitude reusable Xogdor rocket vehicle. The goal for the vertical takeoff and vertical landing (VTVL) vehicle is to start flying by early 2023. The Xogdor will enable more elaborate tests of rocket vehicle landings on Mars and other celestial sites than with Masten’s current low altitude VTVL rockets. Masten Kicks Off Development of Xogdor, our Newest Rocket with Supersonic Speed – Masten Space

Higher altitudes & faster speeds: Xogdor will be our fastest rocket yet! It will test descent and landing technologies at high subsonic speeds up to 200 meters per second (447 miles per hour).

Based on customer needs, Xogdor will also be capable of supersonic speeds to fly to the edge of space on a suborbital trajectory. Why is this important? Supersonic speeds of approximately Mach 3.5 are required to cross the Karman Line (100 km above Earth’s mean sea level). By deploying these speeds on Xogdor, we can test payloads in upper atmosphere and near-space environments with reduced gravity.

Ultimately, the closer we can simulate the lunar and Martian environment, the more accurately we can reduce risks and enable mission success with our test flights.

More payload accommodations: Xogdor will have payload capacity of at least 200 kg with accommodations that include power, data storage, thermal control, and ground telemetry. Xogdor can also provide a fully pressurized or vacuum environment for payloads. Since Earth has a thicker atmosphere than the Moon and Mars, Xogdor will have a layer in the control system that minimizes the effects of the atmosphere, such as lift and drag, from the technologies being tested.

The vehicle will also enable studies of long range point-to-point travel:

With the ability to fly longer ranges, Xogdor also offers more flexibility when it comes to the launch and landing location. That means we don’t necessarily have to launch and land at our Mojave test site. For example, based on a customer needs, we could launch Xogdor at another test site, such as Spaceport America, and land back in Mojave or vice versa. This opens the door for point-to-point payload transportation.

A new video about the company’s many projects:

See also

** Dawn Aerospace begins test flights of of the Mk-11 Aurora Spaceplane. Aurora, which is just 4.8m long and has a 75kg dry weight, currently uses a jet engine rather than the rocket that will power the vehicle to 100 km in altitude. It will carry a payload of 4kg. Dawn Aerospace Mk-II Spaceplane Flight Testing Commences – Five Flights Complete — Dawn Aerospace

Dawn Aerospace, a New Zealand-Dutch space transportation company, has conducted five flights of the company’s Mk-II Aurora suborbital spaceplane. The flights were to assess the airframe and avionics of the vehicle, and were conducted using surrogate jet engines.

The campaign was run from Glentanner Aerodrome in New Zealand’s South Island. Taxi testing commenced in early July and five flights occurred between the 28th and 30th of July, reaching altitudes of 3,400 feet.

Dawn is creating reusable and sustainable space technologies – suborbital and orbital rocket-powered planes – that operate much like a fleet of aircraft, taking off and landing horizontally at airports.

Mk-II is a suborbital plane designed to fly 100 km above the Earth, and aims to be the first vehicle to access space multiple times per day. The vehicle serves as a technology demonstrator for the two-stage-to-orbit-vehicle, the Mk-III. Mk-II will also be used to capture atmospheric data used for weather and climate modelling, and to conduct scientific research and technology demonstrations.

See also Dawn Aerospace runs test flights from Glentanner near Aoraki/Mt Cook – NZ Herald.

** Rocket Factory Ausburg (RFA) pressure tests booster to destruction. The successful test of the steel structure marks an important milestone in the German company’s march towards a debut launch of the RFA One rocket in 2022 from Norway’s Andøya space port. The company recently announced progress with engine tests in Kiruna, Sweden. The booster will use nine full-scale staged combustion engines that burn kerosene and liquid oxygen. A second stage will use one of the same engines. An orbital third stage will place payloads into the desired orbit. The rocket will put up to 1600 kilograms into low earth orbit. The company says the first stage will be recovered and reused but has not given details on how this will be implemented.

More details of RFA rocket development: German startup Rocket Factory Augsburg successfully performs critical tests ahead of 2022 debut –

A video of the test:

You can’t make an omelet without breaking eggs! With our burst test, we pushed the limits of our first stage and successfully tested several systems and processes. A new first stage is already being built. On we go!

** A June update on Skyrora small lift rocket developer in Scotland:

In this week’s episode we chat with Skyrora’s Business Operations Manager Derek Harris. We discuss how Skyrora have been doing through the UK lockdown, ESA Boost Initiative funding, updates on Skyrora’s 2021 test launch and other exclusive updates! Skyrora designs, manufactures and deploys rockets to clear the way for small satellite manufacturers looking to access Space. Headquartered in Edinburgh, and with facilities across Europe, Skyrora is developing launch vehicle technology to ensure that the life-changing benefits of space are realised here on earth.

** Light-lift rocket company Isar Aerospace of Germany gains payload contracts:

Here is an interview with the CCO of ISAR: The Space Cafe Podcast #036: Stella Guillen: CCO of ISAR Aerospace, Europe’s hottest stock in the launcher segment – SpaceWatch.Global

** ChinaDeep Blue Aerospace vertical-takeoff and landing (VTOL) rocket makes a short hop: Chinese space firm launches and lands small test rocket – SpaceNews

*** Deep Blue Aerospace flies vertical takeoff and landing rocket to 100 meters. Deep Blue Aerospace conducts 100-meter VTVL rocket test – SpaceNews

See also this earlier report: Chinese space firm launches and lands small test rocket – SpaceNews

** Gravitilab Aerospace offers low cost reusable sounding rockets for microgravity research services. The company recently carried out a commercial sounding rocket launch from the Spaceport 1 site in the Outer Hebrides: Gravitilab makes history by launching the first commercial rocket in the UK with the Spaceport 1 team – Gravitilab

A historic UK first has taken place in the Outer Hebrides today (Thursday 26th August) with a unique commercial space launch conducted by a wholly-owned British company and a Scottish spaceport team.

Spaceport 1 joined forces with East Anglian firm Gravitilab Aerospace Services on the sub-orbital launch of flight test vehicle ‘ADA’, named after Ada Lovelace, the 19th century English mathematician who is considered the world’s first computer programmer.

ADA took off from Benbecula marking a successful launch for Spaceport 1, the consortium led by Comhairle nan Eilean Siar (Western Isles Council), which aims to open at Scolpaig, North Uist, in 2022. From this base, commercial sub-orbital space launches will begin to take place from within the UK.

The landmark launch moment represents a key milestone for this unique commercial partnership between Spaceport 1 and Gravitilab, providing proper physical evidence of how companies can work together commercially under the new Government space framework to deliver a successful rocket launch from the UK.

Gravitilab ADA suborbital rocket launches from the Outer Hebrides Spaceport 1 site.

The company has several other suborbital rockets in its fleet. A drop-pod system using a drone is also available:

Louis brings the laboratory to you, so you can undertake your research, de-risk your technology and validate your designs. Whether you’re looking for end-to-end campaign support or a streamlined route to launch, we provide the service so you can focus on the results. With a lead time to launch of one month and a cost from £63 per second of microgravity, we think you’ll agree it’s worth discovering more about this unique member of our fleet.

Payload: up to 6kg
Microgravity duration: 5-10 seconds per drop
Altitude: 600m-2,000m
Available from: Q4 2021


Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Space Suit Opportunities, Inspiration4, FAA & Starship
Vol. 16, No. 6, September 22, 2021

Space Frontier Foundation Award for NewSpace Journalism


** Space transport briefs:


** T+196: Checking In on Small Launch with Firefly Alpha, Astra LV0006 – Main Engine Cut Off

Last week, Firefly made their first flight attempt of Alpha, and Astra launched their latest vehicle, LV0006. Though both ended in failure, it’s a good time to check in on them and other small launchers that will debut soon like, ABL’s RS1 and Relativity’s Terran 1, and how they may all compete with each other.

** Space Policy Edition: Mars via the Nuclear OptionPlanetary Society

Can nuclear propulsion fundamentally transform our ability to send humans to Mars? Bhavya Lal, a policy and nuclear engineering expert now working at NASA, helped write a new report on the topic for the National Academies of Sciences. She joins the show to talk about the advantages of various types of nuclear propulsion, the engineering and policy challenges that face them, and the role of government versus the private sector in developing and deploying transformational technologies.

** Tuesday, Aug.24.2021Stephanie Thomas talked about “Princeton Satellite Systems fusion development program, R&D plus fusion fuels, R&D, the fusion industry overview, fusion reactor performance specs and timelines, funding fusion and much more“.

** Two Scientists Are Building a Real Star Trek ‘Impulse Engine’ – Bloomberg

See also MEGA Progress | Space Studies Institute

** NSS Space Forum – Rocket Summer: The Adventures of Blue Origin, SpaceX, and Virgin GalacticNational Space Society

It’s rocket summer! There has never been a summer like this in the history of commercial space. Virgin Galactic has just made a successful flight with Sir Richard Branson on board as one of the passengers. Blue Origin flew a crew of four to space on July 20 aboard its New Shepard vehicle, with Jeff Bezos as one of the passengers. SpaceX’s Starship may be making its first full-up orbital test flight later this summer. NSS Space Ambassadors Loretta Hall, Bruce Mackenzie, Casey Steadman, and moderator Jim Plaxco provided an overview of these historic events and discussed their larger implications for the development of commercial space.

** Aug.13: Media Telecon: NASA, Boeing to Provide Update on Starliner’s Orbital Flight Test-2NASA Video

** How India Developed World Class Rockets From Humble Beginnings. – Scott Manley

** The Space Show – Sunday, Oct.3.2021Scott Truax talked about his father, Robert (Bob) Truax, and his father’s rocket engineering accomplishments.

** ULA Stops Selling Atlas Rocket LaunchesScott Manley

The Atlas rocket traces its ancestry back to the 1950’s, it’s been at the core of the US space capabilities, carrying historic payloads for NASA, the DoD and commercial partners. This week ULA made it clear that it has no more Atlas rockets for sale as it move to transition to Vulcan which is not reliant on engines from Russia. There are 29 launches left, which is likely more than some ‘new’ rockets, but this decade should see the final flights of Atlas, Delta and Proton – all historic vehicles with their roots in the cold war.

** Status of ISEC – Members Meeting Aug.14.2021International Space Elevator Consortium


Continue to Roundup Part 3: SpaceX Falcon 9, Dragon, and Starship.

=== Amazon Ads ===

Amazon Unbound:
Jeff Bezos and the Invention of a Global Empire


Asteroids: How Love, Fear, and Greed
Will Determine Our Future in Space

Space transport roundup: Part 1 – Orbital Launches – Oct.27.2021

A sampling of articles, videos, and images dealing with space transport from late July till today (find previous roundups here). The roundup is split into three postings:

  • Part 1 Orbital launches
  • Part 2: Light orbital lift development, suborbital, space transport articles, news, videos, etc.
  • Part 3 SpaceX Falcon 9, Dragon, and Starship

Note: My link roundups on space transport, weekly space policy, etc have gotten too big and time-consuming.
And reader interest/visit rate has been low.  So I’ve decided to discontinue them after this issue and instead focus
on short posts dealing with specific space policy, transport, public participation, and technology topics.

** USA – Oct.16: ULA Atlas V sends Lucy spacecraft on mission to the Trojan asteroids near Jupiter. NASA, ULA Launch Lucy Mission to ‘Fossils’ of Planet Formation | NASA

Over the next 12 years, Lucy will fly by one main-belt asteroid and seven Trojan asteroids, making it the agency’s first single spacecraft mission in history to explore so many different asteroids. Lucy will investigate these “fossils” of planetary formation up close during its journey.

About an hour after launch, Lucy separated from the second stage of the ULA Atlas V 401 rocket. Its two massive solar arrays, each nearly 24 feet (7.3 meters) wide, successfully unfurled about 30 minutes later and began charging the spacecraft’s batteries to power its subsystems.

Lucy sent its first signal to Earth from its own antenna to NASA’s Deep Space Network at 6:40 a.m. The spacecraft is now traveling at roughly 67,000 mph (108,000 kph) on a trajectory that will orbit the Sun and bring it back toward Earth in October 2022 for a gravity assist.

Named for the fossilized skeleton of one of our earliest known hominin ancestors, the Lucy mission will allow scientists to explore two swarms of Trojan asteroids that share an orbit around the Sun with Jupiter. Scientific evidence indicates that Trojan asteroids are remnants of the material that formed giant planets. Studying them can reveal previously unknown information about their formation and our solar system’s evolution in the same way the fossilized skeleton of Lucy revolutionized our understanding of human evolution.

A United Launch Alliance Atlas V rocket with the Lucy spacecraft aboard is seen in this 2 minute and 30 second exposure photograph as it launches from Space Launch Complex 41, Saturday, Oct. 16, 2021, at Cape Canaveral Space Force Station in Florida. Lucy will be the first spacecraft to study Jupiter’s Trojan Asteroids. Like the mission’s namesake – the fossilized human ancestor, “Lucy,” whose skeleton provided unique insight into humanity’s evolution – Lucy will revolutionize our knowledge of planetary origins and the formation of the solar system. Photo Credit: (NASA/Bill Ingalls)

Lucy’s Trojan destinations are trapped near Jupiter’s Lagrange points – gravitationally stable locations in space associated with a planet’s orbit where smaller masses can be trapped. One swarm of Trojans is ahead of the gas giant planet, and another is behind it. The asteroids in Jupiter’s Trojan swarms are as far away from Jupiter as they are from the Sun.

The spacecraft’s first Earth gravity assist in 2022 will accelerate and direct Lucy’s trajectory beyond the orbit of Mars. The spacecraft will then swing back toward Earth for another gravity assist in 2024, which will propel Lucy toward the Donaldjohanson asteroid – located within the solar system’s main asteroid belt – in 2025.

Lucy will then journey toward its first Trojan asteroid encounter in the swarm ahead of Jupiter for a 2027 arrival. After completing its first four targeted flybys, the spacecraft will travel back to Earth for a third gravity boost in 2031, which will catapult it to the trailing swarm of Trojans for a 2033 encounter.

** USA – Sept.27: ULA Atlas V launches Landsat 9 remote sensing satellite for NASA: NASA Launches New Mission to Monitor Earth’s Landscapes | NASA

A joint mission with the U.S. Geological Survey (USGS), Landsat 9 lifted off on a United Launch Alliance Atlas V rocket from Vandenberg’s Space Launch Complex 3E. Norway’s Svalbard satellite-monitoring ground station acquired signals from the spacecraft about 83 minutes after launch. Landsat 9 is performing as expected as it travels to its final orbital altitude of 438 miles (705 kilometers).

… “Today’s successful launch is a major milestone in the nearly 50-year joint partnership between USGS and NASA who, for decades, have partnered to collect valuable scientific information and use that data to shape policy with the utmost scientific integrity,” said Secretary of the Interior Deb Haaland. “As the impacts of the climate crisis intensify in the United States and across the globe, Landsat 9 will provide data and imagery to help make science-based decisions on key issues including water use, wildfire impacts, coral reef degradation, glacier and ice-shelf retreat, and tropical deforestation.”

The first Landsat satellite launched in 1972. Since then, NASA has always kept a Landsat in orbit to collect images of the physical material covering our planet’s surface and changes to land usage. Those images allow researchers to monitor phenomena including agricultural productivity, forest extent and health, water quality, coral reef habitat health, and glacier dynamics. …

See also

** USA – Sept.2: Firefly‘s first launch of Alpha rocket fails due to engine shutdown shortly after liftoff. The rocket nevertheless flew for 145 seconds but then lost control and was destroyed via the flight termination system. The company sees the launch as a sucessful first test flight:

Firefly conducted the first flight test of our Alpha vehicle on September 2, 2021. Although the vehicle did not make it to orbit, the day marked a major advancement for the Firefly team, as we demonstrated that we “arrived” as a company capable of building and launching rockets. We also acquired a wealth of flight data that will greatly enhance the likelihood of Alpha achieving orbit during its second flight. In short, we had a very successful first flight.

More at:

**** Tim Dodd, the Everyday Astronaut tours the Firefly facilities :Tour Firefly Aerospace’s Factory and Test Site With Their CEO, Tom Markusic“:

Join me as I walk through Firefly Aerospace’s Texas test site and factory with their CEO, Tom Markusic. This was a highly detailed tour where we got to learn a ton about their engines, their rockets, and rocket science in general. It was super fun chatting with Tom because he has a Ph.D. in Mechanical and Aerospace Engineering, so I learned a lot!

See also

** USA – Aug.28: Astra Rocket 3.3 launch aborted in flight due to engine failure. One of the five first stage engines failed to ignite properly at liftoff. However, the rocket still managed to remain upright and gain altitude after sliding horizontally away from the launch pad. The rocket was nevertheless doomed by the engine failure and the flight was aborted at the time of the main engine cutoff.

The USAF contracted Astra for this mission and a second one later this year. The company says it expects to launch three times by the end of the year and has a 50 mission backlog. The rockets will lift off from the Pacific Spaceport Complex on Kodiak Island, Alaska. So far, the company has yet to put a payload into orbit but came close earlier this year when a propellant mixture problem caused the upper stage to reach just short of orbital velocity.

**** October 12: Astra announced completion of the investigation of the August launch failure:

The issue we encountered was something we hadn’t seen before. Leading up to liftoff, the first stage propellant distribution system provides the rocket with fuel and oxidizer. We designed the system to quickly disconnect and seal when the rocket lifts off. On this launch, propellants leaked from the system, mixed, and became trapped in an enclosed space beneath the interface between the rocket and the launcher. Those propellants were ignited by the engine exhaust, causing an over-pressure event that severed the connection to the electronics that control the fuel pump, shutting down the engine less than one second after liftoff.

This is why the rocket hovered until it could take off with only four engines producing thrust. The vehicle then returned to a normal trajectory, passing through max-Q. After that point, the four remaining engines did not have sufficient power to enable the vehicle to make orbit.

Appropriate fixes have been implemented and October 27th is now set as the date of the next launch.

Other Astra news:

Astra’s rocket for the LV0007 launch.

** USA – Aug.10: Northrop Grumman launches Antares rocket with Cygnus vessel from Wallops Island commercial spaceport. Christened the S.S. Ellison Onizuka, the NG-16 Cygnus vehicle brought 3,723 kilograms of cargo to the ISS when it docked to the station on Thursday, Aug.12. The cargo includes scientific experiment materials, various equipment, food and supplies to support the crew, etc.

** USA/NZ – July 29: Rocket Lab Electron puts US military satellite into orbit in the first launch sinceing an upper stage failure on May. 15th. The smallsat Monolith, a project of the Air Force Research Laboratory (AFRL) and Utah State University’s Space Dynamics Laboratory, was initially going to be on the first Rocket Lab launch from Wallops Island, Virginia. However, delays in getting the launch termination system certified by NASA led to moving the launch to New Zealand.

**** Oct.20: Rocket Lab will attempt to recover the first stage on the next Electron launch. Rocket Lab to Recover Electron Rocket, Introduce Helicopter Operations During Next Launch | Rocket Lab

[Rocket Lab] will attempt a controlled ocean splashdown and recovery of the first stage of an Electron rocket during the company’s next launch in November. The mission will be Rocket Lab’s third ocean recovery of an Electron stage; however, it will be the first time a helicopter will be stationed in the recovery zone around 200 nautical miles offshore to track and visually observe a descending stage in preparation for future aerial capture attempts. The helicopter will not attempt a mid-air capture for this mission but will test communications and tracking to refine the concept of operations (CONOPS) for future Electron aerial capture.

The ‘Love At First Insight’ mission is scheduled to lift-off from Launch Complex 1 in New Zealand during a 14-day launch window that opens on November 11, 2021 UTC. The mission’s primary objective is to deploy two Earth-observation satellites for global monitoring company BlackSky, with the secondary objective to splash down and recover Electron’s first stage to further validate Rocket Lab’s recovery operations and hardware.

In addition,

The ‘Love At First Insight’ mission will also include new recovery hardware developments to Electron including an advanced parachute to be deployed from the first stage at a higher-altitude, allowing for a slower drift back to Earth to test communications and tracking for future aerial recovery. Electron also features improvements to the first stage heat shield which protects its nine Rutherford engines while they endure up to 2200 °C heat and incredible pressure on the descent back to Earth. A team of Rocket Lab engineers and technicians will again be stationed at sea with their purpose-built Ocean Recovery and Capture Apparatus (ORCA) to retrieve the stage from the ocean and return it to Rocket Lab’s production complex in New Zealand for analysis and inspection.

The ‘Love At First Insight’ mission follows two previous ocean splashdown recovery missions; the ‘Return to Sender’ mission in November 2020, and the ‘Running Out of Toes’ mission in May 2021.

Other Rocket Lab news:

** Russia – Oct.14: Arianespace Soyuz launches 36 more OneWeb satellites. The constellation of Internet service spacecraft has now reached halfway to its final size of.

** S. Korea – Oct.21: The Korea Space Launch Vehicle (KSLV)-I on inaugural launch reaches space but upper stage fails to achieve orbital velocity after premature shutdown. Also referred to as the Nari, the three-stage rocket was launched from Naro Space Center, a few hundred kilometers south of Seoul. The payload was a dummy mock-up of a satellite. Overall, this was a successful test of the first orbital rocket built with South Korean technology.

** Russia – Oct. 4: Soyuz sends three to the ISS including cosmonaut Anton Shkaplerov and actress Yulia Pereslid  and film producer/director Klim Shipenk. Shkaplerov will join the ISS crew for several months while the actress and director will spend 12 days filming nearly an hour of footage for a film titled, The Challenge. This will be the first feature film shot in space with a professional actor and film maker. Soyuz MS-19 launches film crew to Station amid tightened Russian space reporting regulations –

*** Oct.17: Shipenk and Pereslid return to Earth with cosmonaut Oleg Novitskiy, who had been in space for 191 days

** Russia – Sept.14: Soyuz 2.1b launches 34 OneWeb Internet communication satellites. Soyuz mission launches 34 OneWeb satellites to orbit –

** Russia – Sept.9: Russian Soyuz-2.1v launches Kosmos-2551 military reconnaissance satellite from the Plesetsk Cosmodrome in northern Russia.

** Russia – Aug.21: Arianespace Soyuz 2.1B launches 34 OneWeb satellites from Baiknour Cosmodrome. Total number of OneWeb satellites in orbit reaches 288.

** Europe – Oct.24: Ariane 5 launches two telecommunication satellites from the Guiana Space Centre close to Kourou, French Guiana. The stacked SES-17 and Syracuse-4A spacecraft combined weighed a total of 11.2 tons, a new record mass for Ariane 5 launches into geostationary transfer orbits. The telecom company SES owns the SES-17 satellite and will use it to deliver broadband coverage over the Americas, the Caribbean and over the Atlantic Ocean. Commercial aviation will be a priority market. France’s DGA (Direction générale de l’armement) defence procurement agency arranged the launch of Syracuse-4A, which will provide secure communications for the armed forces of France and will support NATO and European-led operations. The next Ariane 5 launch will send the James Webb Space Telescope into a far orbit out past the Moon.

** Europe – Aug.16: Arianespace Vega rocket launches Pléiades Neo-4 earth observation satellite and four cubesat secondary payloads. The solid-fueled rocket lifted off from the European spaceport in French Guiana (South America).

This mission marked Arianespace’s 7th successful launch of the year and the second with Vega in 2021. It lasted one hour, 44 minutes and 59 seconds during which Pléiades Neo 4 separated on a sun-synchronous orbit at an altitude of 625 km while the four auxiliary payloads separated at 551 kilometers. …

… Today’s mission’s primary purpose was orbiting Pléiades Neo 4, the second of the four satellites of the Pléiades Neo constellation, the first being launched with Vega on April 28, 2021. With 30cm-native-resolution, best-in-class geolocation accuracy and twice-a-day revisit capability, the four Pléiades Neo satellites unlock new possibilities with the ultimate in reactivity. The satellite was fully funded and manufactured by its operator Airbus.

Pléiades Neo 4 was the 133rd Airbus Defence and Space satellite to be launched by Arianespace. There are currently 18 Airbus satellites in Arianespace’s backlog 11 of which will be launched with Vega and Vega C launchers. The last two satellites of the Pléiades Neo constellation will be placed into orbit in 2022 thanks to the next generation launch vehicle, Vega C.

** Europe – July.30: Arianespace launches Ariane V with two satellites for GEO transfer orbit. Ariane Flight VA254 lifted off from the from the Guiana Space Center (CSG) with “Star One D2, built by Maxar Technologies for Brazilian operator Embratel, and EUTELSAT QUANTUM for Eutelsat, developed with Airbus Defence and Space and the European Space Agency (ESA)”. This was the first Ariane V mission in nearly a year due to the slowdown with the pandemic and a grounding to deal with an issue with vibrations in the fairings.

The Star One D2 carries

Ku-, Ka-, C- and X-band transponders, that will enable it to expand broadband coverage to new regions in Central and South America and add an updated X-band payload for government use over the Atlantic region

The QUANTUM is an

With its configurable software-based design, EUTELSAT QUANTUM will be the first universal satellite in the world that can be repeatedly adjusted to the customer’s requirements at any time. It is equipped with electronically steerable receiving antennae and operates in Ku-band with eight independent reconfigurable beams. This configuration allows the operator to reconfigure in-orbit the radio-frequency beams over the coverage zones, providing unprecedented flexibility in data, government and mobility services.

There will be one more Ariane V mission before the launch of the James Webb telescope:

** India – Aug.12: Indian GSLV launch fails due to third stage problem. The Geosynchronous Satellite Launch Vehicle Mk II (GSLV-F10), the most powerful rocket in the Indian stable of launch systems, lifted off with the EOS-03 earth observation satellite from the Satish Dhawan Space Centre (SDSC) SHAR in Sriharikota, India. This was was the fourteenth flight of ISRO’s Geosynchronous Satellite Launch Vehicle (GSLV) and the eighth of the upgraded Mark 2 version. Shortly after separation from the second stage, the cryogenic third stage began to lose attitude control and the engine failed to ignite. The mission had been delayed since March 2020 due to technical issues and the pandemic.

** Japan – Oct.26: JAXA launches QZS-1R navigation satellite on H-IIA rocket built by Mitsubishi Heavy Industries. The launcher lifted off from Tanegashima Island in southwestern Japan. The QZS-1R replaces an aging member of Japan’s current constellation of three satellites in GEO. Eventually, the constellation will reach a size of 7 satellites and will provide an independent home-grown navigation service for the entire country.


Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Space Suit Opportunities, Inspiration4, FAA & Starship
Vol. 16, No. 6, September 22, 2021

Space Frontier Foundation Award for NewSpace Journalism


** China – Oct.27: Kuaizhou 1A rocket sends Jilin-1 Gaofen-02F hi-res optical imaging satellite into low earth orbit. The launch was carried out by Expace, a wholly owned subsidiary of the China Aerospace Science and Industry Corp. (CASIC), the government’s primary space organization. The Kuaizhou 1A is a four stage vehicle with solid fueled motors except for a liquid fueled top stage.

** China – Oct.24: Long March 3B launches space debris mitigation test satellite from the Xichang Satellite Launch Center in Sichuan Province in southwest China. No details were provided about the capabilities of the satellite or what sort of tests will be made. Presumably, it will rendezvous with an existing debris object, e.g. a derelict spacecraft or upper stage, or it release an object to test purposes. It will then carry out some operation that demonstrates one or more methods for de-orbiting such objects. These sort of techniques could also be used by a military satellite to disable an opponent’s spacecraft so there will be broad international interest in this mission. Interesting that the satellite was sent into geostationary transfer orbit rather than low earth orbit for such a test.

** China – Oct.15: Long March 2F sends 3 new crew members to Tiangong space station. The rocket lifted off from the Jiuquan Satellite Launch Center in the Gobi Desert with the Shenzhou 13 spacecraft carrying with astronauts Zhai Zhigang (commander), Wang Yaping and Ye Guangfu will reach China’s new space station. The rendezvous and docking took place about 8 hours later. This is the second crew to go to the station and they are expected to remain there about six months. The first crew stayed for about three months.

** China – Oct.14: China launches Long March 2D launches H-alpha Solar Explorer plus 10 smallsats.

** China – Sept.27: Classified Shiyan-10 satellite launched by Long March 3B. Just two hours after the KZ-1A launch discussed below, the LM-3B lifted off from the Xichang Satellite Launch Center in Sichuan province. The satellite was inserted into a geostationary transfer orbit but apparently there followed a malfunction of some sort perhaps with the satellite’s onboard engine. However, the satellite eventually began to use its onboard thrusters to reach its target orbit.

** China – Sept.27: Kuaizhou 1A (KZ-1A) rocket puts Jilin-1 Gaofen-02D remote sensing satellite into polar orbit. The rocket lifted off from the Jiuquan Satellite Launch Center in Inner Mongolia. The number of Jilin-1 Gaofen-2 satellites in orbit now numbers five.

** China – Sept.20: Long March 7 rocket launches Tianzhou-3 cargo vehicle to the Tianhe space station. The rocket lifted off from the Wenchang spaceport in Hainan, an island in southeast of China. The vehicle docked to the station just 7 hours later. The cargo includes propellant to maintain the station’s orbit and various consumables and equipment. The next crew of three are set to launch to the station on October 13th.

** China – Sept.17: Shenzhou-12 crew returns from Tianhe space station. The three taikonauts -Nie Haisheng, Liu Boming and Tang Hongbo – rode in the Shenzhou-12 return module as it parachuted onto the Gobi Desert, Inner Mongolia. The crew was the first for the new Tianhe space station, which currently consists of the core module and the Tianzhou-2 supply vehicle. During their 90 day mission, they prepared the core module for operation and for the arrival of additional modules later. The Tianzhou-3 uncrewed supply vehicle is set to launch to the station on Sept. 20th. A second crew is expected to go to the station in early October for a six month stay.

** China – Sept.9: Long March 3C rocket sends Zhongxing-9B direct broadcast satellite to geostationary transfer orbit. The rocket lifted off from the Xichang Satellite Launch Center in Sichuan Province in southwest China,

** China – Sept.7: Gaofen 5-02 Earth-observation satellite launched on Long March 4C rocket. The rocket lifted off from the Taiyuan Satellite Launch Center in northern China’s Shanxi province. The satellite, developed by the Shanghai Academy of Spaceflight Technology, uses hyperspectral imaging to monitor “air, water and environments”.

** China – Aug.24: China launches two rockets on same day. A Long March-3B rocket successfully inserted a new communication technology experiment satellite into a geostationary transfer orbit after liftoff from the Xichang Satellite Launch Center in southwest China’s Sichuan Province. Later in the day, a Long March-2C carrier rocket put three satellites into low earth orbit from the Jiuquan Satellite Launch Center in northwest China. Two of these spacecraft are test satellites for a planned Internet services constellation.

** China – Aug.19: Chinese Long March-4B launches two Tianhui-2 earth observation satellites from the Taiyuan Satellite Launch Center. The Tianhui 2 series are a quasi-secretive group of Earth observation satellites

** China – Aug.5: Long March 3B launches military communication satellite. This was the fourth Chinese launch in the past 8 days, counting the failure of the iSpace Hyperbola 1 discussed below.

The Zhongxing-2E satellite, operated by China Satellite Communications, launched at 16:30 UTC onboard a Long March 3B/E rocket, or Chang Zheng 3B/E, from Launch Complex 2 (LA-2) of the Xichang Satellite Launch Center in southwestern China. It is the desired launch site of the country´s space program for launches beyond low Earth orbit (LEO).

China Satellite Communications is owned by the Chinese Government, and the line of Zhongxing satellites are used to provide general communication services for the military.

Zhongxing is suspected to be the fourth satellite of the Shentong-2 military communication satellite line. They are operated by the Chinese army and provide communication services for voice and text communications.

** China – Aug.4: Chinese Long March 6 launches 2 technology test satellites from the Taiyuan Satellite Launch Center in Shanxi Province in northern of the country.

KL-Beta-A and KL-Beta-B were built by the Shanghai Institute for Microsatellite Innovation of the Chinese Academy of Sciences (CAS) and are operated by the German company KLEO-connect. The Beta satellites will help test new interference suppression technology for Ka-band mobile communications satellites in low Earth orbit (LEO) and Geostationary orbit (GEO).

** China – Aug.3: Launch of commercial Chinese rocket fails. The Chinese company iSpace suffered the second failure in a row of the solid fueled Hyperbola rocket.

** China – July 29: Chinese Long March 2D launches Tianhui 1-04 earth observation satellite from the Jiuquan Satellite Launch Center in the northwestern Gobi Desert.


Continue to Roundup Part 2: Light orbital lift, suborbital, space transport articles, news, videos, etc.

=== Amazon Ads ===

Test Gods:
Virgin Galactic and the Making of a Modern Astronaut


Liftoff: Elon Musk and the Desperate Early Days
That Launched SpaceX


America’s New Destiny in Space

Space transport roundup: Part 2 – SpaceX – July.28.2021

This roundup provides a sampling of recent articles, videos, and images dealing with space transport (find previous roundups here). Part 2 here focuses on SpaceX while Part 1 reports on activities and news of other space transportation companies and organizations around the world.

There were no Starship prototype flights since the last roundup on May 18th but a tremendous amount of activity continued at SpaceX regardless. The Starship section below describes the action in Boca Chica Beach. We start, though, with a look at Falcon 9 and non-Starship related activities:

  • Launch/Landing: A rapid F9 mission rate continued up till a pause in July due to a scheduled pause for launches to allow KSC/Cape Canaveral to carry out annual maintenance. There have been 20 F9 launches so far this year. Only one of the 20 booster landings failed.
  • Reuse of F9 boosters has reached as many as 10 flights. The max number could reach significantly more than that according to Elon Musk. So far, SpaceX has detected no need for retirement, or even major refurbishment, of boosters after 10 missions, which was the original target for the number of reuses with minimal refurbishment between flights.
  • Starlink constellation reached the initial operational size of nearly 1600 active satellites with the Starlink 28 v1.0 mission. Once all the satellites reach their final target orbits, uninterrupted global service between the polar circles will be available.
  • New customized droneship goes operational for landings on the Atlantic and a droneship arrives on the West Coast. Starlink launches into polar orbit will start this summer from Vandenberg AFB and a droneship is needed to provide for booster landings.
  • CRS-22 Cargo Dragon launched, docked, departed, and landed safely.
  • Crew-2 Dragon remains at the ISS but was moved to a new docking port to open the target port for the Boeing Starliner, which will be launched at the end of July for an uncrewed test mission: SpaceX crew capsule relocated outside space station before Boeing mission – Spaceflight Now

** May 26 : Starlink 28 v1.0 put 60 more satellites into orbit. With this launch, the total number of satellites fills the “first shell” needed to provide global coverage between +/- 53 degrees latitude. The first stage booster previously flew once before for the Sentinel-6A mission. The booster landed successfully on the “Just Read the Instructions” droneship in the Atlantic Ocean. According to SpaceX, “One half of Falcon 9’s fairing previously supported four Starlink missions, and the other previously supported a Starlink mission and the Transporter-1 mission.”

*** June 3: Cargo Dragon launched to the ISS and docked two days later. The CRS-22 mission involves a brand new Dragon craft (denoted as C209) and the Falcon 9 used a a brand new Falcon 9 booster (denoted as B1067). Along with supplies and science materials, the Dragon delivered two new solar arrays for the ISS.

July 9: Cargo Dragon returns to earth following departure from the ISS on July 8th.

*** June 6: Falcon 9 launched SirusXM Radio satellite SXM-8, built by Maxar. The first stage booster landed successfully for the 3rd time. It previously flew for SpaceX’s Crew-1 and Crew-2 missions carrying astronauts to the International Space Station. The first stage landed on the “Just Read the Instructions” droneship, located in the Atlantic Ocean.

*** June.17: Falcon 9 launches GPS satellite for USAF. This was the fiirst national security satellite to launch on reused booster. The booster landed safely on a droneship platform in the Atlantic.

** June 30: SpaceX launches Transporter-2 Rideshare mission with 88 satellites on board. The first stage landed safely back at Cape Canaveral after its 8th flight.

*** Customized droneship for F9 booster landings unveiled: The new droneship, A Shortfall of Gravitas (ASOG), will soon provide a platform for boosters landings in the Atlantic. ASOG differs significantly from the older droneships –Just Read The Instructions (JRTI) and Of Course I Still Love You (OCISLY) – in looks and capabilities. Most of the support equipment is protected from the rocket’s flames within dark metal casings. The landing pad is somewhat smaller. ASOG also has its own propulsion system so it doesn’t need towing to and from the recovery location. Combined with the robotic Octagrabber robot that secures the booster after it lands, the ship will eventually allow for recovery and transport to port to be controlled remotely with no need for workers to come on board.

July 9: The “Of Course I Still Love You” (OCISLY) droneship arrived on the West Coast after a long trip from Florida aboard the semi-submersible ship “Mighty Servant 1“. OCISLY will provide a landing platform for boosters launched from Vandenberg Space Force Base that cannot return to the launch site for landing.


Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Bezos to Fly, SpaceX Gains, Commercial Space Markets
Vol. 16, No. 4, June 8, 2021

Space Frontier Foundation Award for NewSpace Journalism


*** Starship

The primary focus of the Starship program since the successful SN15 flight on May 5th has been the construction of the orbital launch and landing facility at Boca Chica Beach plus assembly and testing of two Super Heavy Booster prototypes. The goal of all this work is to carry out an orbital test flight of a  combined Starship/Super Heavy booster as soon as possible. (See the animation below of the orbital test, which would have the Starship reenter and land on the ocean near Hawaii, short of a complete orbit.)

Here is a diagram showing the status of development of elements of the Starship/Super Heavy booster vehicles and the related facilities:

This comparison of images illustrates the dramatic rate of change at Boca Chica in the past three years:

Yet an even bigger hangar assembly building is coming:

*** A selection of Starship related tweets from Elon:

** Lots of Raptor engines will be needed for the 100s of StarShips (6 engines) and Super Heavy boosters (33 engines) rolling off the assembly line in the coming years. SpaceX has already produced a good sized flock of Raptors:

** USAF program studying use of Starship-class vehicles for fast global transportation. The Air Force is requesting $47.9 million in the 2022 budget for a study of “Rocket Cargo“. (The US military is starting to get really interested in Starship | Ars Technica.) Since the 1960s there have been occasional studies by the military into using suborbital rocket transports for super-fast global delivery of supplies and troops to crisis spots. The emergence of the fully reusable, vertical takeoff and landing Starship has clearly generated renewed interest in such technology, which is no longer just theoretical. From the start, SpaceX has a promoted the Starship as capable of suborbital, point-to-point transport in additional to orbital and deep space missions. This was presented in the context of civilian passenger flight services but clearly military transport is an option as well.

Although the budget request aroused major media attention in the past few weeks, the U.S. Transportation Command (USTRANSCOM) actually announced last fall that it was partnering with SpaceX and Exploration Architecture Corporation (XArc) into looking at the feasibility of such systems: USTRANSCOM Announces the Next Frontier for Logistics – Space – United States Transportation Command (USTRANSCOM) – Oct.7.2020

While speaking at the National Defense Transportation Association’s Fall Meeting on Oct. 7, U.S. Army Gen. Stephen R. Lyons, commander, U.S. Transportation Command (USTRANSCOM), announced USTRANSCOM is looking to space to quickly move critical logistics during time-sensitive contingencies or to deliver humanitarian assistance, helping to project and sustain the Joint Force in support of national objectives.

Speaking at the virtual meeting from the command’s headquarters at Scott Air Force Base, Illinois, on Oct. 7, Lyons told the audience about USTRANSCOM’s partnership with Space Exploration Technologies Corporation (SpaceX) and Exploration Architecture Corporation (XArc) to explore this emerging capability of rapid transportation through space.

Visualization of a suborbital rocket powered vertical takeoff and landing vehicle for fast global military transport. Credits: Exploration Architecture Corporation (XArc).

“Think about moving the equivalent of a C-17 payload anywhere on the globe in less than an hour,” Lyons asked the virtual audience. “Think about that speed associated with the movement of transportation of cargo and people. There is a lot of potential here and I’m really excited about the team that’s working with SpaceX on an opportunity, even perhaps, as early as 21, to be conducting a proof of principle.”

Logistics traditionally labors under the tyranny of distance and time, and global access. For example, operations in the Pacific Ocean theater may transit 10,000 miles—one way.

“For the past 75 years or so, we have been constrained to around 40,000 feet altitude and 600 miles per hour in our very fastest method of logistics delivery—airlift,” said USTRANSCOM deputy commander, U.S. Navy Vice Adm. Dee Mewbourne, who leads the command’s effort in this area.

Current space transportation is also more weight- and volume-constrained than airlift, and faces challenges in positioning, launching, and recovery operations. As industry advances to overcome these challenges as well as increase its pace of launches to decrease costs, a space transportation capability to put a crucial cargo quickly on target at considerable distances makes it an attractive alternative.

XArc described the goals of the USTRANSCOM Global Space Transportation study:

The XArc CRADA [Cooperative Research and Development Agreements] tasks are to determine global spaceport basing criteria for Point-to-Point space transportation and delivery, and assess the ground support and logistics requirements needed for integrating a spacelift capability. The research study evaluates ground support infrastructure requirements with regard to support facilities, cargo standardizations and logistics for materiel handling, mission dedicated equipment, supplies, materiel and personnel, and intermodal cargo transfer. International regulatory issues of air and space law are also addressed, as well as infrastructure security considerations.

The goal is to establish a seamless integration of air and space transport modalities to work through a variety of possible contingencies. The study considers a variety of emerging space transportation technologies in development by commercial service providers, and also considers Orbital Depots to determine viability of “space drop” supply logistics.

A press briefing on June 4th by the US indicated that the Rocket Cargo Program is a serious initiative and intended to be more than just another paper study: Yes, the military is serious about rocketing supplies around the planet | Ars Technica

It seems clear that defense leaders are eager to be an early adopter of these technologies. Officials said the Department of Defense would even consider buying initial launches at a reduced price to both support the companies’ test programs as well as to test logistics materials and procedures.

And while, initially, cargo-carrying rockets probably would land at existing spaceports or runways, that need not always be the case. One day, such urgent rocket deliveries might land anywhere on the planet, rugged terrain or not, Spanjers said. He noted that rockets, after all, have landed on the Moon.

“If they can land in those places, we’re interested in knowing to what extent we can extend that to a larger range of terrains on Earth, so that we can do immediate cargo transports to basically anywhere on the planet quickly,” he said.

Artist’s view of a delivery of emergency cargo via a VTOL rocket vehicle. Credits: USAF/Ars Technica

See also:

**** Starship orbital flight animation

With suborbital Starship tests seemingly complete with SN15’s successful landing, all eyes are on the first orbital test flight of a full Starship-Super Heavy stack. This test, scheduled to take place only in a few month’s time, will feature the world’s tallest and most powerful rocket ever built taking flight for the first time. This animation shows the proposed flight plan of that first orbital test flight. NOTE: Some aspects of this animation are inaccurate or out of date. During the production many new pieces of information were revealed that weren’t known at the time certain scenes were animated.

*** Sampling of daily video reports from Boca Chica:

*** July.20: Super Heavy Booster 3 Static Fires for the First Time | SpaceX Boca ChicaNASASpaceflight – YouTube

SpaceX performs a full duration static fire of Super Heavy Booster 3. This is the first prototype booster to be fueled and ground tested. Booster 3 has three Raptor engines installed though Elon Musk stated they may try to fire it with nine engines in the future. Video from Mary (@BocaChicaGal) and the NSF Robotic Camera Team. Edited by Brady Kenniston (@TheFavoritist)

*** July.21: New Raptor Boost Engine “R2B2” Delivered for Super Heavy | SpaceX Boca ChicaNASASpaceflight – YouTube

As crews inspect Booster 3 after its successful static fire, more Raptor engines for a Super Heavy booster are delivered. Dubbed “R2B2” by McGregor crews, Raptor Boost 2 (RB2) may be mounted on the outer engine ring of a Booster prototype in the coming months. Video & Photos from Mary (@BocaChicaGal) and the NSF Robotic Camera Team. Edited by Nathan Shields

*** July.20 SpaceX Starbase, Tx FlyoverRGV Aerial Photography

** July 23: Raptor Engine Removed from Super Heavy Booster 3 | SpaceX Boca ChicaNASASpaceflight – YouTube

Raptor engine RC59 was removed from Super Heavy Booster 3, work started on the 9th section of the Launch Tower, and a Super Heavy Aft dome was spotted being worked on inside one of the production tents. Video and Pictures from Steven Marr (@spacecoast_stve). Edited by Nate Shields.

*** July.27: Three Raptor Engines Delivered – Booster 4 Methane Transfer Tube Installed | SpaceX Boca ChicaNASASpaceflight – YouTube

Three Raptor engines were delivered, Super Heavy Booster 4’s Methane Transfer Tube (also known as the downcomer) was installed, and work on the orbital launch table continued. Video and Pictures from Mary (@BocaChicaGal) and the NSF robots. Edited by Nate Sheilds.

*** Other Starship and space transport videos:

*** July.26: Starship Tests Payload Bay Design, Booster 3 Static Fire, New Test Rig Built | This Week in StarbaseNASASpaceflight – YouTube

As SpaceX pushes toward the Orbital Test Flight, critical pieces needed to support the flight start to fall into place. Ian Atkinson walks you through the progress being made at Starbase. Hosted by Ian Atkinson (@IanPineapple).

*** July.21: SpaceX working on design for Starship 2.0!What about it!?

Today we’ll talk Starship 2.0. SpaceX’s latest design changes that will be present on the orbital flight. We’ll also talk about the lead theory for the mystery structure, and we’ll talk about the Super High Bay. SpaceX’s even larger Starship high bay to begin construction soon! Let’s find out!

*** July.24SpaceX’s Mechazilla Rises, Starliner Prepares, Nauka Launch, Wally Funk’s flight to Space Marcus House

Not only did we see Raptor action this week with SpaceX’s record-sized rocket booster, but we witnessed the launch of Russia’s Nauka Laboratory for the International Space Station. Better late than never. We have updates on Hubble’s Trouble and Rocket Lab’s anomaly review. The Dragon has been tamed yet again, and of course, we had the first crewed flight of New Shepard with Wally Funk’s long-awaited ride to space. Quite the action-packed week right there!

*** July.27: SpaceX’s Mechazilla Rises, Starliner Prepares, Nauka Launch, Wally Funk’s flight to Space – Marcus House

Today, we’ll have a closer look at how NASA and SpaceX might fly to the Moon. We already teased the scenarios in the last video talking about SpaceX’s Human Landing System and what mission options could be possible, but today, we want to add some numbers. True, there are lots of official numbers missing but we have found some clues on how it might go. …

*** July.12: Why SpaceX Will Move To New Thrusters To Simplify StarshipScott Manley

Starship and SuperHeavy development continue, there hasn’t been any more test flights of Starship as they have decided to move on to testing the booster and putting Starship into orbit.

*** Other SpaceX news:

** WATCH: Elon Musk discuss Starlink Internet at MWC 2021 – Livestream – Interview on June 29th. See also the summary: Elon Musk interview: SpaceX, Starliink and his motivation and philosophy – CIS 471

** Sampling of dearMoon expedition applicant videosSpaceX moon mission billionaire reveals who might get a ticket to ride Starship – CNET


Continue to Roundup Part 1.

=== Amazon Ads ===

Test Gods:
Virgin Galactic and the Making of a Modern Astronaut


Liftoff: Elon Musk and the Desperate Early Days
That Launched SpaceX


America’s New Destiny in Space

Space transport roundup: Part 1 – General – July.28.2021

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here). Part 1 focuses on news from companies and organizations around the world. Part 2 Roundup focuses on  SpaceX.

** July 20: Blue Origin flies New Shepard with people for first time. On  the 52nd anniversary of the first human landing on the Moon, a Blue Origin New Shepard vertical-takeoff-and-landing rocket lifted off from the company’s East Texas facility with humans aboard for the first time. The crew included Jeff Bezos, his brother Mark, Wally Funk, and 18 year old Oliver Daemen (see items below about Funk and Daemen). Their capsule rode atop the New Shepard’s booster powered by a BE-3 liquid hydrogen-liquid oxygen engine. The engine shut off after about 110 seconds at roughly 40 kilometers in altitude and the rocket continued upward to over 100 kilometer. Near apogee the capsule separated from the booster. The booster returned for a powered landing while the capsule came back to earth via parachutes.

Here is Blue’s statement following the flight: Blue Origin safely launches four commercial astronauts to space and back – Blue Origin

Blue Origin successfully completed New Shepard’s first human flight today with four private citizens onboard. The crew included Jeff Bezos, Mark Bezos, Wally Funk and Oliver Daemen, who all officially became astronauts when they passed the Kármán Line, the internationally recognized boundary of space.   

Upon landing, the astronauts were greeted by their families and Blue Origin’s ground operations team for a celebration in the West Texas desert.  

A Historic Mission  

      • Wally Funk, 82, became the oldest person to fly in space.  
      • Oliver Daemen, 18, was the first ever commercial astronaut to purchase a ticket and fly to space on a privately-funded and licensed space vehicle from a private launch site. He also became the youngest person to fly in space.  
      • New Shepard became the first commercial vehicle under a suborbital reusable launch vehicle license to fly paying customers, both payloads and astronauts, to space and back.  
      • Jeff and Mark Bezos became the first siblings to ever fly in space together.  

“Today was a monumental day for Blue Origin and human spaceflight,” said Bob Smith, CEO, Blue Origin. “I am so incredibly proud of Team Blue, their professionalism, and expertise in executing today’s flight. This was a big step forward for us and is only the beginning.”  

Blue Origin expects to fly two more crewed flights this year, with many more crewed flights planned for 2022.  

Blue has not yet announced ticket prices or how sales will be arranged. However, during the briefing (see video below), Jeff Bezos said that in private interactions with auction bidders and others have led to reservations adding up to $100 million:

Post-flight briefing:

A video played during the post-flight briefing of the crew during the weightlessness period of the flight:

Some articles about the flight:

*** July 18: A pre-flight briefing from Blue Origin:

***  July 15: It was announced that the winner of the seat auction (see below) will ride on a later flight. Daemen will take the auction winner’s place on the July 20th flight. It’s said that Oliver’s father, Joes Daeman, a billionaire founder of a private equity firm, was one of the high bidders during the auction.

Here is Blue’s announcement: First Paying Customer on New Shepard Will Be the Youngest to Fly to Space – Blue Origin

Today, Blue Origin announced Oliver Daemen will be the first paying customer to fly on board New Shepard, marking the beginning of commercial operations for the program. He will join Jeff Bezos, Mark Bezos, and Wally Funk aboard the first human flight on July 20. At 18-years-old and 82-years-young, Oliver Daemen and Wally Funk represent the youngest and oldest astronauts to travel to space.

The winner of Blue Origin’s auction, who has asked to remain anonymous at this time, has chosen to fly on a future New Shepard mission due to scheduling conflicts. Club for the Future announced this week the auction gift has enabled Club to donate $1 million to 19 non-profit organizations ($19 million in total), all of which are working to support the future of living and working in space.

*** A comparison of the two suborbital space flight systems:

See also:

*** $28M buys a ticket to fly to space with Jeff Bezos and his brother. An open bidding session on June 12th was the final phase of the auction of a seat on the first New Shepard to go to suborbital space with people on board the capsule. The flight is set for July 20th, the 52nd anniversary of the first human to walk on the Moon. The identity of the winner of the auction will be revealed in a few weeks, presumably after the money is transferred. (With auction fees, the total is actually $29.6M.)

*** July 1: Blue announces that Wally Funk will take fourth seat on the New Shepard. Wally Funk will fly to space on New Shepard’s first human flight – Blue Origin

Funk was a member of the group of women pilots in the 1960s who, in a private, non-NASA related project, passed a similar suite of physiological tests as given to male astronaut candidates by NASA and the USAF. However, the women pilots, later dubbed the “Mercury 13”, could not become NASA astronauts due to the rules of the day, particularly the requirement that astronauts must have experience as test pilots. (For more about women and NASA spaceflight in the 1960s, see The Myth of the Mercury 13 – Space KSC)

More at

*** Blue Origin promotes the power of space flight to fundamentally alter one’s perspective on life:

*** Blue developing reusable upper stage for the New Glenn heavy lift rocket. According to Eric Berger, Jeff Bezos has initiated development of a reusable upper stage of the New Glenn to be competitive with SpaceX’s fully reusable Starship system. Blue Origin has a secret project named “Jarvis” to compete with SpaceX | Ars Technica

However, over the last year, Bezos took note as SpaceX launched and landed its Starship vehicle. This is one of the reasons he decided to initiate a project named “Jarvis” at Blue Origin within the reusable second-stage program. Sources said Bezos has walled off parts of the second-stage development program from the rest of Blue Origin and told its leaders to innovate in an environment unfettered by rigorous management and paperwork processes.

Work has advanced quickly on the Jarvis project, apparently named after the character in the Marvel Cinematic Universe. Initial tank tests could begin as soon as this fall on stainless steel hardware at Blue Origin’s site in Florida, followed by further tests if the approach proves feasible. For now, at least, the company’s plan is to launch New Glenn initially with an expendable second stage before transitioning to the fully reusable upper stage in the mid-2020s. Such a fully reusable launch system is now seen as a key to competing with SpaceX to launch large payloads.

*** Other recent Blue Origin news and articles:

** July 11: Virgin Galactic SpaceShipTwo Unity flies Richard Branson to suborbital space along with 3 other passengers and 2 pilots. Although the SpaceShipTwo vehicle VSS Unity has reached space three times before (see entry below about the May 22nd flight), this flight was the first with a full crew of six. It also marked a long promised milestone by taking the founder to space, highlighting the management’s confidence in the safety of the system.

There will be two more test flights and then operational  flights will start with paying customers on board. Meanwhile, the company is getting a bit of revenue from carrying research experiments on board, some of which will require crew tending. Even on this flight, VG executive Sirisha Bandla operated a small hand-held microgravity plant experiment from the University of Florida and funded by NASA – Virgin Galactic’s SpaceShip Two Carries NASA-Supported Payload | NASA.

Here is the VG statement about the flight: Virgin Galactic Successfully Completes First Fully Crewed Spaceflight – Virgin Galactic:

Today’s flight was the 22nd test flight of VSS Unity and the first test flight with a full crew in the cabin, including the Company’s founder, Sir Richard Branson. The crew fulfilled a number of test objectives related to the cabin and customer experience, including evaluating the commercial customer cabin, the views of Earth from space, the conditions for conducting research and the effectiveness of the five-day pre-flight training program at Spaceport America.

VSS Unity achieved a speed of Mach 3 after being released from the mothership, VMS Eve. The vehicle reached space, at an altitude of 53.5 miles, before gliding smoothly to a runway landing at Spaceport America.

This seminal moment for Virgin Galactic and Sir Richard Branson was witnessed by audiences around the world. It gave a glimpse of the journey Virgin Galactic’s Future Astronauts can expect when the Company launches commercial service following the completion of its test flight program.

The mission specialists in the cabin were Beth Moses, Chief Astronaut Instructor; Colin Bennett, Lead Flight Operations Engineer; Sirisha Bandla, Vice President of Government Affairs and Research Operations; and the Company’s founder, Sir Richard Branson. The VSS Unity pilots were Dave Mackay and Michael Masucci, while Kelly Latimer and CJ Sturckow piloted VMS Eve.

Check out the webcast of Virgin Galactic’s Unity 22 flight. Here is a video of highlights from takeoff through landing:

Virgin Galactic VP Sirisha Bandla looks out a SS2 port window. Credit: Virgin Galactic

See also:

*** July 1: Virgin Galactic announcement of the SpaceShipTwo flight with Richard BransonVirgin Galactic Announces First Fully Crewed Spaceflight – Virgin Galactic

The “Unity 22” mission will be the twenty-second flight test for VSS Unity and the Company’s fourth crewed spaceflight. It will also be the first to carry a full crew of two pilots and four mission specialists in the cabin, including the Company’s founder, Sir Richard Branson, who will be testing the private astronaut experience.

Building on the success of the Company’s most recent spaceflight in May, Unity 22 will focus on cabin and customer experience objectives, including:

      • Evaluating the commercial customer cabin with a full crew, including the cabin environment, seat comfort, the weightless experience, and the views of Earth that the spaceship delivers — all to ensure every moment of the astronaut’s journey maximizes the wonder and awe created by space travel
      • Demonstrating the conditions for conducting human-tended research experiments
      • Confirming the training program at Spaceport America supports the spaceflight experience

There will be a live streaming webcast from the cabin. This video introduces the pilots and crew:

*** May.22: Virgin Galactic’s SpaceShipTwo VSS Unity flies to suborbital space from Spaceport America in New Mexico. Virgin Galactic Completes First Human Spaceflight from Spaceport America, New Mexico – Virgin Galactic

Virgin Galactic today completed its third spaceflight and the first ever spaceflight from Spaceport America, New Mexico. Today’s flight sees New Mexico become the third US state to launch humans into space.

VSS Unity achieved a speed of Mach 3 after being released from the mothership, VMS Eve, and reached space, at an altitude of 55.45 miles before gliding smoothly to a runway landing at Spaceport America.

On VSS Unity’s flight deck were CJ Sturckow and Dave Mackay, while Kelly Latimer and Michael Masucci piloted VMS Eve. CJ, who flew as pilot-in-command, becomes the first person ever to have flown to space from three different states. The crew experienced extraordinary views of the bright, blue-rimmed curvature of the earth against the blackness of space. New Mexico’s White Sands National Park sparkled brilliantly below. Their experience today gives Virgin Galactic’s Future Astronaut customers a glimpse of what lies ahead.

Michael Colglazier, Chief Executive Officer of Virgin Galactic, said: “Today’s flight showcased the inherent elegance and safety of our spaceflight system, while marking a major step forward for both Virgin Galactic and human spaceflight in New Mexico. Space travel is a bold and adventurous endeavor, and I am incredibly proud of our talented team for making the dream of private space travel a reality. We will immediately begin processing the data gained from this successful test flight, and we look forward to sharing news on our next planned milestone.”

Virgin Galactic fulfilled a number of test objectives during the flight, including:

      • Carried revenue-generating scientific research experiments as part of NASA’s Flight Opportunities Program.
      • Collected data to be used for the final two verification reports that are required as part of the current FAA commercial reusable spacecraft operator’s license.
      • Tested the spaceship’s upgraded horizontal stabilizers and flight controls and validated EMI reductions.

Following the flight, and in line with normal procedures, Virgin Galactic will conduct a review of all test data gathered and thoroughly inspect the spaceship and mothership. Once the team confirms the results, the Company plans to proceed to the next flight test milestone.

Here is a description of the research experiments on the SS2: NASA-supported Tech to Fly on Virgin Galactic’s SpaceShipTwo | NASA.

One of the payloads aboard is an electromagnetic field measurement experiment from the Johns Hopkins Applied Physics Laboratory (APL). Previous flight tests led to the technology’s evolution into the JANUS platform, which provides suborbital researchers with vital information about the environmental conditions inside a spacecraft, while also adding to knowledge about the lower ionosphere encountered at suborbital flight altitudes and how it may impact the performance of spacecraft and the technologies aboard them.

Progressively refined versions of the system have flown on Masten’s Xodiac vertical takeoff and vertical landing system and Blue Origin’s New Shepard rocket-powered system, and the upcoming flight will be the second on SpaceShipTwo. The APL team is shaping JANUS into an integration platform for scientific research and suborbital instrument development, and adds to the technology’s environmental monitoring capabilities with each iterative flight. This progressive flight testing could eventually enable external suborbital environmental monitoring as well, by mounting the payload to the outside of a spacecraft.

“The access to these commercial flight vehicles through the Flight Opportunities program is truly game changing,” said H. Todd Smith, the JANUS principal investigator at APL. “This enables new phases of research and technology development with lower cost and repeatable testing. Without it, technologies that are highly relevant to suborbital flight research would be years behind where we are now.”

Also aboard SpaceShipTwo will be the Collisions into Dust Experiment (COLLIDE) from the University of Central Florida in Orlando. In addition to early tests aboard the space shuttle, the technology has flown on New Shepard, SpaceShipTwo, and parabolic flights. The experiment aims to advance our understanding of the behavior of dust and fine particles in response to human and robotic activities in space – on the Moon, Mars, and asteroids. It could also add to what scientists know about planet formation. Changes to the experiment setup since the last flight include improved stabilization of the payload and changes to the triggering of the experiment to maximize data collection in microgravity.

“We’re able to observe and learn more because of the ability to fly and then fly again,” said principal investigator Josh Colwell. “Our experiments on SpaceShipTwo are designed to help us learn more about the particular types of dust and particle collisions that previous flights showed us could be very interesting to study more closely – and to fix parts of our experiment that didn’t work the first time we tried them. So, the ability to make design changes and fly again is so crucial to gathering the data we need and hopefully increasing the science return on our work.”

See also:

The flight had been delayed to check an issue with the WhiteKnightTwo VMS Eve carrier aircraft:

Virgin Galactic regularly monitors its vehicles to verify their condition and inform timing of future upgrades and modifications that can improve performance or reduce future maintenance work. A post-flight inspection of VMS Eve in early May called for further engineering analysis to assess a known maintenance item in the tail of the vehicle, which was scheduled to be addressed during the next maintenance period. This analysis has been completed with the Company determining structures healthy, clearing Eve for flight.

*** FAA grants Virgin Galactic license for SS2 flights with commercial passengers. Virgin Galactic Receives Approval From FAA for Full Commercial Launch License Following Success of May Test Flight – Virgin Galactic

Virgin Galactic today announced that the Federal Aviation Administration (“FAA”) updated the Company’s existing commercial space transportation operator license to allow the spaceline to fly customers to space.

The Company also announced that it has completed an extensive review of data gathered from its May 22 test flight and confirmed that the flight performed well against all flight objectives.

The adjustment to Virgin Galactic’s operator’s license, which the Company has held since 2016, marks the first time the FAA has licensed a spaceline to fly customers. It is further validation of the Company’s methodical testing program, which has met the verification and validation criteria required by the FAA.

Michael Colglazier, Chief Executive Officer of Virgin Galactic, said, “We’re incredibly pleased with the results of our most recent test flight, which achieved our stated flight test objectives. The flight performed flawlessly, and the results demonstrate the safety and elegance of our flight system. Today’s approval by the FAA of our full commercial launch license, in conjunction with the success of our May 22 test flight, give us confidence as we proceed toward our first fully crewed test flight this summer.”

See also:

*** Researcher to carry out experiments during Virgin Galactic suborbital spaceflight: Virgin Galactic Announces New Contract for Human-tended Research Spaceflight – Virgin Galactic

Virgin Galactic has announced a new contract to fly Kellie Gerardi, a researcher for the International Institute for Astronautical Sciences (IIAS), on a dedicated research flight, during which Kellie will conduct experiments and test new healthcare technologies while she is in space.

The IIAS and Virgin Galactic teams will collaborate with academic and government partners to carefully plan Kellie’s flight activities to maximize the science and technology advancements gained from the research experiments.

See also IIAS Announces World’s First Industry-Sponsored Researcher Contracted to Fly on Commercial Spacecraft – International Institute for Astronautical Sciences

Since 2015, IIAS has established research and education programs that use a variety of space-analog environments. The research spaceflight will advance the scientific knowledge gained from a number of Kellie’s previous reduced gravity flight campaigns performed here on Earth, including with the National Research Council of Canada and the Canadian Space Agency (CSA).

The IIAS experiments to be flown in space include the Astroskin Bio-Monitor wearable sensors system, developed by Canadian company Carré Technologies Inc. (Hexoskin) with the support of the CSA, as well as a free-floating fluid configuration experiment. The IIAS and Virgin Galactic teams will collaborate closely with academic and government partners to carefully plan Kellie’s spaceflight activities to maximize the science and technology advancements gained from her research experiments.

IIAS Founder Dr. Jason Reimuller said, “We’re excited to leverage the unique benefits of Virgin Galactic’s Spaceflight System for human-tended research. This has been a long-time goal of our institute and IIAS is proud to be the first research institute to produce a commercial astronaut. Throughout her years working with our institute, Kellie has demonstrated the expertise needed to produce novel research in dynamic operational environments. We’re looking forward to enabling the next generation of scientist-astronauts to conduct their research in space. ”

Kellie Gerardi said, “I’m enormously proud of my work with IIAS and I’m grateful to Dr. Reimuller and the team for the continued investment in me. I’m also excited by the precedent we’re setting with this human-tended research flight. I’m honored to take this first step on behalf of our community, and I’m looking forward to supporting the many talented researchers who will certainly follow.”

*** July.28: Rocket Lab to resume Electron launches following resolution of the failure in May (see next item): Rocket Lab to Launch U.S. Space Force Mission from Launch Complex 1 in New Zealand | Rocket Lab

The dedicated mission is scheduled for lift-off on July 29, 2021 NZT (July 29 UTC) and will see Electron deploy an Air Force Research Laboratory-sponsored demonstration satellite called Monolith. The satellite will explore and demonstrate the use of a deployable sensor, where the sensor’s mass is a substantial fraction of the total mass of the spacecraft, changing the spacecraft’s dynamic properties and testing ability to maintain spacecraft attitude control. Analysis from the use of a deployable sensor aims to enable the use of smaller satellite buses when building future deployable sensors such as weather satellites, thereby reducing the cost, complexity, and development timelines. The satellite will also provide a platform to test future space protection capabilities.

The mission was procured by the Department of Defense (DoD) Space Test Program (STP) and the Rocket Systems Launch Program (RSLP), both based at Kirtland Air Force Base, New Mexico.; in partnership with the Defense Innovation Unit (DIU) as part of the Rapid Agile Launch Initiative (RALI).  The mission is being managed by the Launch Enterprise’s Small Launch and Targets Division, which is part of the USSF’s launch organization of choice. The mission has been named ‘It’s a Little Chile Up Here’ in a nod to the beloved green chile of New Mexico where the Space Test Program is based.

‘It’s a Little Chile Up Here’ will be Rocket Lab’s fourth launch for the year and the company’s 21st Electron launch overall.

Originally slated for lift-off from Launch Complex 2 (LC-2) at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Island, Virginia, the mission has been transferred to Launch Complex 1 (LC-1) in New Zealand while NASA continues certification processes for autonomous flight termination system software for launches from LC-2.

*** July.20: Rocket Lab completed analysis of Electron launch failure in May. A problem in the second stage engine ignitor produced corrupted data that led to a series of faults and finally in an engine shutdown. Fixes have been made and preparations for next launch this month now underway. Rocket Lab Completes Anomaly Review, Next Mission on the Pad in July | Rocket Lab

The May 15 anomaly occurred after 17 successful orbital flights of the Electron launch vehicle which has deployed more than 100 satellites to orbit since 2018. Immediately following the anomaly, Rocket Lab launched a rigorous internal review, assembling its investigation team with oversight by the Federal Aviation Administration (FAA). The investigation team scoured thousands of channels of telemetry and systems data from the flight and worked systematically through an extensive fault tree analysis to determine the cause of the failure.

The review concluded that an issue occurred within the second stage engine igniter system almost three minutes and 20 seconds into the flight. This induced a corruption of signals within the engine computer that caused the Rutherford engine’s thrust vector control (TVC) to deviate outside nominal parameters and resulted in the engine computer commanding zero pump speed, shutting down the engine.

The igniter fault resulted from a previously undetectable failure mode within the ignition system that occurs under a unique set of environmental pressures and conditions. The issue was not evident during extensive pre-flight testing for this mission, including more than 400 seconds of burn for this particular engine, more than 1,500 Rutherford engine hot fires to date, and 17 successful orbital launches. Rocket Lab has since been able to reliably replicate the issue in testing and has implemented redundancies in the ignition system to prevent any future reoccurrence, including modifications to the igniter’s design and manufacture.

The anomaly review confirmed that Electron’s first stage performed flawlessly during the mission and did not contribute to the flight issue. As a result, Rocket Lab was able to conduct a successful reentry, ocean splashdown and recovery of the first stage as planned, marking a major milestone in the company’s program to make Electron a reusable launch vehicle.

See also

** Chinese commercial companies developing reusable rockets. Several rocket startup companies in China are pursuing reusable vehicles. Some are starting from small, low altitude vertical-takeoff-and-landing (VTOL) rockets, similar to the Masten Space vehicles, to learn the basics of reusable rocket construction and operation. They then plan to build orbital class rockets similar to the SpaceX Falcon 9 with a reusable first stage booster and expendable upper stage.

Space Pioneer announced recently a successful funding round that will enable development of its reusable rockets: Chinese rocket company Space Pioneer secures major funding ahead of first launch – SpaceNews

The funds will be used for the first flight on the Tianlong-1 reusable kerosene-liquid oxygen launch vehicle. Few details of the Tianlong-1 rocket have been revealed. Space Pioneer stated in September 2020 that the first flight vehicle would have a payload capacity to low Earth orbit of more than three metric tons. The first flight was slated for 2021 but Space Pioneer offered no date for the Tianlong-1 launch with the funding announcement.

Space Pioneer says it also completed the final assembly of the Tiansuo-1 vertical takeoff, vertical landing test stage in recent days. Fellow Chinese commercial firms iSpace and Deep Blue Aerospace are also closing in VTVL test stage “hop” tests. Space Pioneer also performed multiple hot fire tests of its 30-ton-thrust HCP liquid engine in the first half of 2021.

Space Pioneer says it is developing low-cost, highly reliable launch vehicles to respond to the requirements of China’s national Satellite Internet project, launching domestic and international commercial satellites and generally boosting China’s space economy. 

And here are images of tests of a VTOL vehicle by Deep Blue Aerospace:

Other rocket companies aiming for reusability includes iSpaceLinkSpace, and Onespace.

** July.19:  China launches Long March 2C rocket with 3 Yaogan-30 remote sensing satellites and Tianqi-15 communications satellite from the Xichang Satellite Launch Center. The Yaogan-30 satellites are believed to be used for signals intelligence. An attempt was made to recover the two payload fairings that comprise the nosecone.  (SpaceX now often successfully recovers Falcon 9 payload fairings from the sea and reuses them.) The test was considered a success: China successfully tests technology that controls rocket fairing landings – People’s Daily Online.

A video released from the fairing parachute test:

More imagery and details at (Google translated version).

** July 9: China sends five satellites to orbit on fourth launch in a week. The Long March 6 carried five remote sensing satellites labeled the Zhongzi-02 group. The rocket lifted off from the inland Taiyuan Satellite Launch Center in the northern Shanxi Province of China.

** July 6: China launches a Tianlian communications relay satellite on Long March 3C rocket.

** July 5: China launches polar orbiting weather satellite on Long March 4C rocket.

** July 3: China launches Long March-2D rocket with five satellites from the Taiyuan Satellite Launch Center in northern China. The payloads were sent into a sun synchronous orbit (SSO) and included three types of earth imaging satellites: Jilin-1 Kuanfu-01B for high res wide area viewing, 3 Jilin-1 Gaofen-03D remote sensing narrow area, and the  Xingshidai-10  smallsat.

** June.18: China launches Long March-2C with three Yaogan military reconnaissance satellites. There was also the Tianqi-14 commercial smallsat that will be used to test Internet of Things (IoT) services for the company Beijing Guodian Gaoke Technology Co. Ltd. The rocket lifted off from the Xichang Satellite Launch Center in southwest China’s Sichuan Province.

** June.17: China launches Shenzhou-12 spacecraft with crew of 3 to space station on Long March 2F rocket. The spacecraft docked with the Tianhe space station six and half hours later. The rocket launched from the Jiuquan Satellite Launch Center in northwest China’s Gobi Desert at 9:22 am. (Beijing Time). From Xinhua

The three astronauts are commander Nie Haisheng, a 56-year-old veteran who participated in the Shenzhou-6 and Shenzhou-10 missions, Liu Boming, 54, who was part of the Shenzhou-7 mission, and Tang Hongbo, 45, who is in his first space mission.

The three astronauts are expected to set a new record for China’s manned space mission duration, exceeding the 33 days kept by the Shenzhou-11 crew in 2016.

Their work will be more complicated and challenging than previous crewed missions, according to CMSA director Hao Chun.

The Shenzhou-12 crew will complete four major tasks in orbit, said Ji Qiming, assistant to the CMSA director, at a press conference held at launch center on Wednesday.

First, they will operate and manage the complex, including the in-orbit test of the Tianhe module, verification of the recycling and life support system, testing and operation training of the robotic arm, as well as management of materials and waste.

Second, they will move, assemble and test extravehicular spacesuits and perform two extravehicular activities for work including assembling an extravehicular toolbox, lifting the panoramic camera and installing extended pump sets.

Third, they will carry out space science experiments and technology experiments, as well as public outreach activities.

Fourth, they will manage their own health through daily life care, physical exercise, and regular monitoring and assessment of their own health status.

More at:

** June 11: Chinese Long March 2D puts 4 spacecraft into orbit including the commercial Earth observation satellite, Beijing-3.

Beijing-3 is a 0.5 meter resolution Earth observation satellite co-operated by Twenty First Century Aerospace Technology, a Beijing based aerospace company that specializes in providing Earth Observation services, and DFH Satellite Co, another Chinese based company that has produced around one third of Chinese satellites currently in orbit.

Despite being named Beijing-3, the satellite is actually set to become the fifth in a constellation of Earth observation spacecraft in Low Earth Orbit.

** June.3: China launches weather satellite on Long March-3B from the Xichang Satellite Launch Center in southwest China’s Sichuan Province The Fengyun-4B (FY-4B) is a next-generation Chinese weather satellite that will provide “weather analysis and forecasting, and environmental and disaster monitoring” from geostationary orbit.

** May.29: China launches cargo craft to the ISS. Docks to Tianhe station 8 hours later. A Long March-7 Y3 rocket lifted off from the Wenchang Spacecraft Launch Site on the coast of the southern island province of Hainan with the the cargo spacecraft Tianzhou-2. The vehicle is scheduled to dock with the new Tianhe space station core module to deliver supplies, equipment and propellant.China launches cargo spacecraft to dock with space station module – Xinhua

Measuring 10.6 meters in length and with a maximum diameter of 3.35 meters, the Tianzhou-2 cargo ship has a maximum takeoff weight of 13.5 tonnes and carries 6.8 tonnes of goods and materials.

More than 160 large and small packages, including supplies for astronauts and space-science equipment, and two tonnes of propellant have been loaded into the cargo freighter, according to the China Academy of Space Technology (CAST).

In addition to supplies for three astronauts, the gear delivered by Tianzhou-2 also includes two spacesuits for extra-vehicular activities, each weighing more than 100 kg.

Tianzhou-2 is also delivering space food, dubbed “space deliveries” by Chinese engineers, including many traditional Chinese dishes.

The cargo craft will operate in orbit for one year. Its power supply capacity is not less than 2,700 watts. It can also carry out multiple in-orbit refueling missions.

“China plans to build the space station into a state-level space lab supporting long astronaut stays and large-scale scientific, technological and application experiments,” said Zhou Jianping, chief designer of China’s manned space program.

See also:

** May.19: China Long March-4B rocket puts Haiyang-2D (HY-2D) ocean monitoring satellite into orbit. The rocket lifted off from the Jiuquan Satellite Launch Center in Gansu Province in northwest China. The satellite joins 5 other Haijang satellites that monitor global ocean colors and water temperatures.

** July 3: Japan’s InterstellarTechnologies successfully launches suborbital rocket. This is the second successful flight following two failed attempts in 2020.

** July.21: Russian Proton-M rocket launches new ISS module: The long awaited Nauka (“Science”) module for the Int. Space Station was finally launched today from Baikonur Cosmodrome in Uzbekistan.  The original target date for the addition to the station was 2007. The Nauka will arrive at the ISS on July 29th and will dock to the Zvezda service module, replacing the Pirs module, which will be de-orbited. The primary function of Nauka is to support scientific research with  work stations, glove box, viewing port for earth observation studies, etc. It will also add 70 cubic meters of volume to the ISS and will provide another sleeping compartment for the Russian side of the station, a new toilet, and more water recycling and oxygen generation capabilities. ESA is sending a new robotic arm to the station via the Nauka module.

** July 1: Arianespace/Russian Soyuz launches 36 OneWeb satellites. The Soyuz 2.1b rocket lifted off from the Vostochny Cosmodrome in far east Russia. According to OneWeb:

The latest launch takes OneWeb’s in-orbit constellation to 254 satellites, or 40% of OneWeb’s planned fleet of 648 LEO satellites that will deliver high-speed, low-latency global connectivity. OneWeb intends to make global service available in 2022.

Service demonstrations will begin this summer in several key locations – including Alaska and Canada – as OneWeb prepares for commercial service in the next six months. Offering enterprise-grade connectivity services, the Company has already announced distribution partnerships across several industries and businesses including with BT, ROCK Network, AST Group, PDI, Alaska Communications and others, as OneWeb expands its global capabilities. The Company continues to engage with telecommunications providers, ISPs, and governments worldwide to offer its low-latency, high-speed connectivity services and sees growing demand for new solutions to connect the hardest to reach places.

It will take about 10 more launches to complete the constellation. Find more about the launch and the OneWeb system at:

** June 29: Russian Progress cargo vehicle launched to the ISS from the Baikonur Cosmodrome in Kazakhstan. The docking with the station is set for 9:03 pm  EDT  on Thursday (0103 GMT Friday). The vehicle will deliver about 2.3 metric tons of propellants, water, spare parts, and scientific materials.

** June.25: Russia launches next-gen ocean signals reconnaissance satellite on Soyuz-2-1b rocket from the Plesetsk Cosmodrome located in Northern Russia. The Pion-NKS No.901 satellite detects radio signals from ships at sea and also uses radar for ship tracking. The satellite is one of a series intended to replace Soviet era designed signals satellites.

No video of the launch has been released.

** May.28: Arianespace Soyuz launches OneWeb satellites. Soyuz Flight ST32 lifted off from Russia’s Vostochny Cosmodrome with 36 OneWeb satellites, expanding the Internet services constellation to 218 satellites in orbit. This was the 57th Soyuz mission for Arianespace and its Starsem affiliate. Flight ST32: Arianespace successfully deploys OneWeb constellation satellites – Arianespace

** June 30: Virgin Orbit successfully launches 7 satellites on first operational mission, following two demo flights.

Virgin Orbit confirmed it successfully deployed into orbit all 7 customer satellites onboard its LauncherOne rocket during today’s Tubular Bells: Part One mission.

Virgin Orbit’s 747 carrier aircraft Cosmic Girl took off from Mojave Air and Space Port this morning at approximately 6:50 A.M. PDT/1:50 PM UTC and flew out to a launch site over the Pacific Ocean, about 50 miles south of the Channel Islands. After a smooth release from the aircraft, the LauncherOne rocket ignited and propelled itself towards space, ultimately deploying its payload into a precise target orbit approximately 500km above the Earth’s surface.

The satellites came from three customers:

  • U.S. Department of Defense Space Test Program (STP) – four technology demo smallsats.
  • Poland’s SatRevolution – STORK-4 and STORK-5 Earth observation smallsats for a constellation that will eventually include 14 satellites.
  • Royal Netherlands Air Force – Brik-II 6-U Cubesat for communications technology tests.

More at:

See also:

** June 29: Northrop Grumman Cygnus cargo vessel departs from the ISS: Northrop Grumman’s NG-15 Cygnus Spacecraft Departs International Space Station to Begin Secondary Mission – Northrop Grumman

The Cygnus is carrying nearly 4 tons of disposable materials. Before the vessel is de-orbited for a destructive reentry in the atmosphere, it will spend about three days in orbit to carry out the secondary phase of the mission. This will included deployment of

… five CubeSats via two separate CubeSat deployers, Slingshot and Nanoracks. This Cubesat deployment includes Dhabisat, the second CubeSat developed by Khalifa University in Abu Dhabi, United Arab Emirates. Dhabisat was developed as part of Khalifa’s Space Systems and Technology Concentration, a joint program developed in collaboration with UAE-based satellite operator Al Yah Satellite Communications Company (Yahsat) and Northrop Grumman.

Northrop Grumman’s NG-15 Cygnus departs from the ISS. Credits: Northrop Grumman

The NG-15 Cygnus spacecraft was launched on Feb. 20 aboard Northrop Grumman’s Antares rocket, carrying nearly 8,000 pounds of scientific research, supplies and equipment to the astronauts living on the station. The vehicle has been berthed with the orbiting laboratory since Feb. 22.

See also

** June 15: Northrop Grumman launches Minotaur 1 with three NRO smallsats from the Mid-Atlantic Regional Spaceport Pad 0B at NASA’s Wallops Flight Facility. Northrop Grumman Successfully Launches Minotaur I Rocket for the National Reconnaissance Office | Northrop Grumman

The Minotaur I is a four-staged solid fuel space launch vehicle, featuring two decommissioned Minuteman rocket motors, Northrop Grumman-manufactured Orion 50XL and Orion 38 solid rocket motors, and the company’s state-of-the-art avionics. The vehicle is capable of launching payloads of up to 1,278 pounds (or 580 kilograms) into low Earth orbit.

“This was our second launch of a Minotaur rocket for the NRO from Wallops in the past 12 months,” said Rich Straka, vice president, launch vehicles, Northrop Grumman. “Northrop Grumman is able to repurpose retired Peacekeeper and Minuteman propulsion, integrating them with company built solid rocket motors along with new subsystems for our Minotaur family of launch vehicles, allowing us to provide reliable, cost-effective and responsive access to space for our customers.”

The NROL-111 launch was the 12th Minotaur I flight and 6th from NASA’s Wallops Flight Facility. The Minotaur family of launch vehicles is comprised of multiple configurations, tailored to meet unique mission requirements. The Minotaur fleet has now completed 28 missions from ranges in Alaska, California, Florida and Virginia with 100 percent success. Northrop Grumman’s Minotaur rockets are manufactured at facilities in Chandler, Arizona; Vandenberg, California; and Clearfield and Magna, Utah.

See also:

** June 12: Northrop Grumman Pegasus XL puts military smallsat into orbit: Northrop Grumman  successfully air launched a Pegasus XL rocket with the Tactically Responsive Launch-2 (TacRL-2) payload for the U.S. Space Force (USSF) . The L-1011 aircraft with the Pegasus attached below it flew out of the Vandenberg Space Force Base and launched the rocket over the Pacific Ocean.

Northrop Grumman Successfully Launches Pegasus XL Rocket. Credits: Northrop Grumman

** June.8: Relativity Space reveals design of fully reusable Terran-R rocket and announces latest funding round raised $650M to help pay for the rocket’s development:

A scale comparison of the Terran I to the reusable Terran R. Credits: Relativity Space

The Terran-R will be a

fully reusable, entirely 3D-printed launch vehicle. 

As a two-stage, 216-foot-tall rocket with a 16-foot diameter, and a 5-meter payload fairing, Terran R will be entirely reusable and capable of launching 20,000kg to low Earth orbit (LEO). Created in Relativity’s Factory of the Future, by the same printers as Terran 1, Terran R has unique aeronautical features and complex structures. The company’s proprietary 3D printing process utilizes software-driven manufacturing, exotic materials and unique design geometries that are not possible in traditional manufacturing, driving unprecedented innovation and disruption in the industry.  

Other than mentioning the use of 3D printed high-temperature metals, there are no details given on how they plan to tackle the difficult challenge of designing a reusable upper stage that avoids paying a large penalty in payload capability. In fact, the 20,000 kg payload to LEO beats the SpaceX Falcon 9, which expends the upper stage except for the fairings.

The goal is to fly the Terran R in 2024:

Terran R will be outfitted with seven 3D-printed Aeon R rocket engines capable of 302,000 lb. thrust each, while its upper stage houses one Aeon Vac engine. Starting in 2024, Terran R will launch from Launch Complex 16, the company’s site at Cape Canaveral, where Terran 1 is also set to launch this year. Combined with the ability to launch 20X more payload than Terran 1, Terran R provides both government and commercial customers affordable access to space, in LEO and beyond. With satellite technology advancements, demand for bandwidth soaring and satellite constellations representing the largest part of the growing market, Terran R was developed to accommodate the growing demand for large constellation launch services, and the company’s growing pipeline of commercial interest. As a testament to its commercial viability, Relativity recently signed its first anchor customer launch contract for its Terran R vehicle.

*** Progress on Terran 1 launch pad.

We are picking up stellar momentum here at Relativity as we work towards launch, including the completion of the maiden lift of our Strongback at Cape Canaveral! This exciting milestone involves a series of wins, from electrical utilities being brought to our launch site and commissioned, to activating our hydraulic lift system, as well as fabricating and installing the pad deck and launch table. To learn more and stay up-to-date as we prepare to launch, sign up for our newsletter here:

** Astra aims for very low cost expendable rockets to compete for the smallsat launch market. The Astra business case is opposite to that of Relativity Space. Astra will avoid 3-D printing and reusability and instead use the simplest manufacturing systems possible to build throwaway rockets as cheaply as possible. Chris Kemp, Astra;s founder, Chairman, and CEO, lays out the company’s strategy in this interview: Astra CEO Chris Kemp previews Rocket 4.0, daily launches, and a smarter planet –

*** Astra acquires company making electric-propulsion spacecraft engines. Apollo Fusion electric thrusters will enable Astra to offer upper stage to customers needing to reach higher orbits than available from Astra’s two-stage Rocket-3 vehicle.

*** First Vulcan launcher in assembly.

** The Game of Small Launchers. Tim Dodd, the Everyday Astronaut, reports on the competition to be The King Of Small Sat Launchers

Today I wanted to do a comparison of some key players in the small sat launch industry. With a handful of new launchers getting hardware out on the launch pad, launching and even some getting to orbit, I think now’s a good time to give you a rundown on some of these exciting new rockets and compare them to the Falcon 1 to see if the industry has caught up to what SpaceX was doing 12 years ago!

00:00 – Intro
03:45 – What is a Small Sat Launcher?
06:45– Rockets too cool to not mention

10:15 – Rocket Lab’s Electron
13:20 – Virgin Orbit’s LauncherOne
16:30 – Astra’s Rocket
19:10 – Firefly’s Alpha
21:00 – ABL’s RS1
22:30 – Relativity’s Terran-1

24:30 – Comparison
28:30 – Conclusion

Check out our article version of this video for sources and easy searching!…

** JAXA space agency sponsors test of a detonation propulsion system on a suborbital rocket:

The Japan Aerospace Exploration Agency (JAXA) launched the sounding rocket “S520-31” from the Uchinoura Space Center in Kimotsuki Town at 5:30 am on the 27th. For the first time in outer space, we have demonstrated a technology called a “detonation engine” that converts a shock wave generated by the reaction of methane and oxygen into thrust. Capsules recording the state of the experiment were collected at sea.

** Launcher, Inc. gains new funding and aims for 2024 debut launch. Launcher raises $11 million, ramps up hiring for 2024 flight | Ars Technica

The California-based rocket startup Launcher said Wednesday it has raised $11.7 million in a Series-A round of funding, well above its $7 million goal, as it seeks to accelerate development of its first orbital vehicle.

In an interview, Launcher founder Max Haot said the company remains on track to debut the small satellite “Launcher Light” rocket in 2024. However, to meet this goal, the company needs to grow significantly now.

[Launcher founder Max ] Haot said the company will probably need to reach about 150 employees by the time of its first orbital flight. He hopes to do so with a total budget of $50 million, supported by an additional round of funding expected to be complete by early next year. Reaching orbit with a budget of $50 million would be about half that expended by Rocket Lab, and still less than other small launch competitors.

**  Launcher developing orbital transfer vehicle that can operate from its own rocket as well as other launch systems.  Named Orbiter, the tug will carry a payload of up to 150 kg and will deploy up to 90 CubeSats. It can also carry larger smallsats that use standard deployers. Orbiter can also host payloads, supplying them with power, communications, etc. The tug is powered by ethylene and nitrous oxide propellants. The first mission is set for the fall of 2022.

** PLD Space wins ESA contract for reusable booster study: PLD Space receives €1M contract from ESA to study the reuse of the MIURA 5 booster – PLD Space

The new project by PLD Space and the European Space Agency (ESA), known as Liquid Propulsion Stage Recovery 2 (LPSR 2), is a continuation of the previous contract awarded by ESA to PLD Space in 2017. This contract is part of ESA’s Future Launchers Programme and focuses on the study of re-entry trajectories and configurations for the safe descent of stage one of MIURA 5, which will be launched from Europe’s Spaceport in French Guiana. The €1M in financial support from ESA will enable PLD to study a series of optimised trajectories, in terms of viability and of safety for recovery of an initial liquid propulsion stage, of MIURA 5 after its launch from Europe’s Spaceport, in an attempt to reduce the current distance covered by this stage from around 700 km to less than half, or even returning the booster to the launch pad.

To undertake the programme, PLD Space will conduct an exhaustive review of the ground and launch operations regulations in French Guiana, a European spaceport coordinated by the French Space Agency, CNES. The company from Elche will also study three main re-entry scenarios as part of the contract:

    • Propulsive braking on re-entry to reduce the horizontal distance the rocket travels from the launch pad, estimated at around 700 km.
    • Propulsive braking and change of trajectory to reverse and attempt to land offshore of the spaceport or attempt a landing on a platform near the launch base.
    • Optimised ascent for stage one in an attempt to reduce the parabolic flight of the rocket once separated from stage two.

Moreover, different technologies that might be useful for the successful re-entry of stage one of the MIURA 5 rocket will also be studied:

    • Propulsion: technologies and processes to control the thrust of the engines during re-entry.
    • Structures: manufacturing and reusability of a full-size fuel tank with its fatigue cycles.
    • Avionics: reusability in the MIURA 5 flight environment of the avionics developed for MIURA 1.

** Masten Space takes ol’Xodiac, vertical takeoff and landing rocket, out for a spin:

This week, we ran a tethered flight test on our VTVL rocket, Xodiac (it was a windy day in Mojave!). Why do we run these tests you might ask?

A few reasons:
👉 To train new hires and cross-train existing team members.
👉 Get into the field and practice all elements that go into an operation.
👉 Keep the team proficient and maintain exposure to the test environment before our next free flight.

P.s. We’re hiring! Come fly with us:

** Update on Firefly Aerospace: Here is a recent presentation given to the FISO (Future In-Space Operations) study group on rocket development at Firefly : “Firefly Aerospace: Making Space for Everyone” –  Eric Salwan, Firefly Aerospace – July 7, 2021. You can follow the audio with the slides (pdf).

** Update on EXOS Aerospace: Here is an interview video with John Quinn, CEO of EXOS:

At Exos our mission in life is not to build and fly Low Earth Orbit capable reusable rockets but rather, to enable other brilliant minds to change the world for the better …as two examples: First, the rapid space manufacturing of mesenchymal stem cells (or MSC’s) for regenerative medical treatments have shown phenomenal results in clinical trials after return from the International Space Station (Exos can do in months what took years on ISS). Secondly, enabling the development and deployment of reusable hypersonic technologies that will drastically reduce point-to-point travel times in the new global economy.

See also EXOS Aerospace Signs An MoU With Financial Expertise Consortium For Series A Action – SatNews.


Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Bezos to Fly, SpaceX Gains, Commercial Space Markets
Vol. 16, No. 4, June 8, 2021

Space Frontier Foundation Award for NewSpace Journalism


** Briefs:


** E64: NASA & Space Nuclear Propulsion Aerospace Corp Space Policy (Vimeo) – Center for Space Policy & Strategy (CSPS)

** Space Nuclear Propulsion for Human Mars Exploration: The National Academy Report, Roger Myers, R. Myers Consulting –  FISO (Future In-Space Operations) June 16, 2021. Slides (pdf).

** Spaceflight Inc.‘s Sherpa-LTE1 Orbital Transfer Vehicle Overview

Spaceflight Inc. VP of Engineering Philip Bracken provides an overview of the company’s Sherpa-LTE1, the industry’s first electric propulsive orbital transfer vehicle (OTV). The OTV will fly on Spaceflight’s SXRS-5 (SpaceX Transporter-2) mission no earlier than June 2021.

** A Roadmap to the Multiplanetary Civilization with Photonic Laser Thruster, Young Bae, Y.K. Bae CorporationFISO (Future In-Space Operations) June 2, 2021. Slides (pdf).

** T+191: Phil Bracken, VP of Engineering at Spaceflight – Main Engine Cut Off

**  Nanoracks’ 20th CubeSat Deployment Mission on The ISSNanoracks

Deployments of two Customer CubeSats from the Nanoracks CubeSat Deployer (NRCSD) onboard the International Space Station (ISS). This completes Nanoracks’ 40th ISS deployment mission and marks our 262nd CubeSat released from the ISS, and the 285th small satellite deployed by Nanoracks overall. Both satellites deployed (@11:10), RamSat and SOAR, each have strong educational and research-based goals. Read more… Nanoracks ISS Satellite Launch Services:…

** Hotel Mars (John Batchelor Show/The Space Show) Tuesday, May.18.2021Douglas Messier spoke with John Batchelor and Dr. David Livingston about Virgin Galactic and “SpaceShipTwo problems and problems noted with the Eve mothership“.

** Airship to Orbit AnimationJP Aerospace Blog

** EPS 2: Terry Virts Talks to Eric Berger (Senior Space Editor at Ars Technica)Astro Terry

Eric Berger is the Senior Space Editor at Ars Technica, and he also is a meteorologist who runs Space City Weather, a hype-free weather site for Houston and the Gulf Coast. His latest book, Liftoff, is about the early days of SpaceX. Today we talk about NASA’s human and robotic space programs, what the future of space will look like, and what weather threats we are facing in the 21st Century.

** The Space Show – Friday, June.25.2021Alexey Bobrick and Gianni Martire talked about “their warp drive paper, which is linked to on our blog, advanced physics and warp drive plus more“.

** Weekly Space Hangout: June 2, 2021 – Advances In Warp Drive Technology Research w/Dr. Mario BorundaWeekly Space Hangout

This week we welcome Dr. Mario Borunda to the show. In his recent article published on, Mario discusses advancements in warp drive technology research. You can read his article, “Warp Drives: Physicists Give Chances Of Faster-Than-Light Space Travel A Boost,” here:… Dr. Borunda double-majored in Physics and Mathematics earning his B.S. from the University of Texas at El Paso in 2003. He received his Ph.D. in Physics from Texas A&M University in 2008. He spent three years as a postdoc and nine months as a research associate at Harvard University. In September 2012 he became a faculty member of the physics department at Oklahoma State University. Dr. Borunda has also been a visiting researcher at Harvard University.

** Achieving Interstellar Travel Featuring Harold “Sonny” White, PH.D.Limitless Space Institute

** T+194: Branson & Bezos Fly To Space – Main Engine Cut Off

Richard Branson flew to space aboard SpaceShipTwo on Virgin Galactic’s Unity 22, and Jeff Bezos flew to space aboard Blue Origin’s New Shepard 16. I share my thoughts on the flights, the vehicles, and how I’m currently looking at suborbital tourism and why it does or doesn’t matter.


Continue to Roundup Part 2 on  SpaceX.

=== Amazon Ads ===

Test Gods:
Virgin Galactic and the Making of a Modern Astronaut


Liftoff: Elon Musk and the Desperate Early Days
That Launched SpaceX


America’s New Destiny in Space