Category Archives: Space Radio

Videos: “Space to Ground” & other space habitat reports – June.17.2022

Here is the latest episode in NASA’s Space to Ground weekly report on activities related to the International Space Station:

** Expedition 67 Space Station Talks with NASA, European Space Agency, Italian Officials-June 17, 2022NASA Video

Aboard the International Space Station, Expedition 67 crew members Kjell Lindgren, Bob Hines and Jessica Watkins of NASA and Samantha Cristoforetti of ESA (European Space Agency) discussed life and work aboard the orbital outpost during an in-flight event June 17 with NASA Administrator Bill Nelson, ESA officials, and ministerial representatives in Rome. Lindgren, Hines, Watkins, and Cristoforetti are in the midst of a long-duration science mission living and working aboard the microgravity laboratory. The goal of their mission is to advance scientific knowledge and demonstrate new technologies for future human and robotic exploration missions as part of NASA’s Moon and Mars exploration approach, including lunar missions through NASA’s Artemis program.

** Inflight call with ESA astronaut Samantha CristoforettiEuropean Space Agency, ESA on Youtube

An educational in-flight call with ESA astronaut Samantha Cristoforetti on board the International Space Station for teachers and students in Europe, connecting live with local events organised by ESERO Italy, ESERO Portugal and ESERO Luxembourg.

** China’s Shenzhou-14 Crew Busy with Various Tasks After 13 Days in Space StationCCTV Video News Agency

The three Chinese astronauts who have been piloting the Shenzhou-14 spaceship are now busy with a slew of work tasks after the trio have spent 13 days at the Tianhe core module of China’s Tiangong space station.

** International Space Station Radios | Talk to Astronauts | Cross-Band Repeater OpsTim Kreitz Adventures

How to use the radios onboard the International Space Station, presented to the Midland Amateur Radio Club by W5GFO.

** ISS Live video stream – IBM/ISS HD Earth Viewing Experiment

Currently, live views from the ISS are streaming from an external camera mounted on the ISS module called Node 2. Node 2 is located on the forward part of the ISS. The camera is looking forward at an angle so that the International Docking Adapter 2 (IDA2) is visible. If the Node 2 camera is not available due to operational considerations for a longer period of time, a continuous loop of recorded HDEV imagery will be displayed. The loop will have “Previously Recorded” on the image to distinguish it from the live stream from the Node 2 camera. After HDEV stopped sending any data on July 18, 2019, it was declared, on August 22, 2019, to have reached its end of life. Thank You to all who shared in experiencing and using the HDEV views of Earth from the ISS to make HDEV so much more than a Technology Demonstration Payload!

====

=== Amazon Ads ===

LEGO Ideas International Space Station Building Kit,
Adult Set for Display,
Makes a Great Birthday Present
(864 Pieces)

====

Outpost in Orbit:
A Pictorial & Verbal History of the Space Station

ARRL Foundation funds student space telerobotics initiative

An announcement from the ARRL Foundation and the Amateur Radio on the International Space Station (ARISS-USA) organizations:

ARRL Foundation Grants First-Year Funding for
ARISS *STAR* Keith Pugh Initiative

A $47,533 ARRL Foundation grant will fund the initial phase of the Amateur Radio on the International Space Station (ARISS‐USA) *STAR* Keith Pugh Memoriam Project. *STAR*, which stands for Space Telerobotics using Amateur Radio, honors the memory of Keith Pugh, W5IU, a highly respected member of the ARISS team who died in 2019. ARISS arranges live question-and-answer sessions via ham radio between International Space Station (ISS) crew members and students. A long-time and enthusiastic supporter of ARISS, Pugh was a star ARISS technical mentor, assisting schools with ARISS contacts, encouraging interest in ARISS among educators, and visiting schools to teach students about wireless radio technology. One goal of ARISS is to engage students in science, technology, engineering, arts, and mathematics (STEAM) subjects.

The ARISS *STAR* Project, is a new educational initiative that will enable US junior and senior high school groups to remotely control robots via ham radio through digital APRS (Automatic Packet Reporting System) commands. Year 1 will focus on systems development and initial validation of ARISS *STAR*, and year 2 will focus on evaluation and final validation.

Systems development and evaluation will be led by university staff and students who will undertake hands-on wireless and telerobotics lesson development, learn about amateur radio, and support *STAR* engineering hardware and software development.

Next, youth teams will be selected to experiment and critique *STAR* telerobotics scenarios in closed courses. In the process, ARISS will encourage students to prepare for and earn an FCC amateur radio license, enabling them to use ham radio to learn and practice concepts in radio technology and radio communication.

ARISS-USA Executive Director Frank Bauer, KA3HDO, praised the ARRL Foundation for its generosity.

“ARISS team member Keith Pugh, W5IU, poured his energy into inspiring, engaging, and educating youth in space and in amateur radio endeavors,” Bauer said. “What better way to honor Keith than through the ARISS *STAR* initiative. We thank the ARRL Foundation for its vision to move this initiative forward. Maybe someday one of our ARISS *STAR* students will use their telerobotics skills to control scientific rovers on the [m]oon or Mars!”

Over the past 2 decades, more than 1,400 ARISS contacts have connected more than 1 million youth with the ISS using amateur radio, with millions more watching and learning.

The overarching goals for *STAR* are to improve and sustain ARISS STEAM educational outcomes. Robotics is gaining popularity among youth and adults alike, and telerobotics adds a wireless accent to robotic control. This will expand ARISS’s educational dimension to attract the attention of more groups, students, and educators — outreach that promises to attract new audiences.

The ARRL Foundation was established in 1973, to advance the art, science, and social benefits of the Amateur Radio Service by awarding financial grants and scholarships to individuals and organizations that support their charitable, educational, and scientific efforts.

ARISS is a cooperative venture of international amateur radio societies and space agencies that support the ISS. US sponsors include ARRL, the Radio Amateur Satellite Corporation (AMSAT), the ISS National Lab‐Space Station Explorers, and NASA’s Space Communications and Navigation program (SCaN). The primary goal of ARISS is to promote exploration of science, technology, engineering, the arts, and mathematics topics. For more information, visit www.ariss-usa.org and www.ariss.org.

=== Amazon Ads ===

Nooelec GOES Weather Satellite RTL-SDR Bundle
Includes NESDR SMArTee XTR Software Defined Radio, &
Everything Else Needed to Receive
LRIT, HRIT & HRPT Satellite Weather Images
Directly from Space!

===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

Student and amateur CubeSat news roundup – Dec.9.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** Two Brigham Young University student Cubesats set to go to orbit on Virgin Orbit LauncherOne flight this month: How BYU’s work with NASA will allow satellites to take selfies in space – Deseret News

For the last five years, students at the BYU College of Engineering have been dreaming up, designing and building two tiny satellites. And after a two-year delay in the launch of NASA’s ELaNa 20 mission, the cube-like modules are finally ready to head to space.

The “CubeSats” have cameras attached to each of their six sides and are designed to take photos of other satellites, giving NASA a cheap method of visually examining the exteriors of spacecraft.

“The idea is you carry up one of these sort of selfie cameras,” said David Long, an engineering professor at BYU, “and when you needed to get a picture of your spacecraft — it is very inexpensive; it’s disposable — you kind of toss it out the window, conceptually, you know, you just deploy it, and it takes pictures of your main spacecraft. And then it just drifts off into space.”

BYU Passive Inspection CubeSat. Credits: BYU PICS

See also:

** Dept. of Education’s CTE Mission: CubeSat competition announces selection of 5 finalists: U.S. Department of Education announces five finalists in national challenge

[On Dec.2], the U.S. Department of Education announced the five finalists in CTE Mission: CubeSat, a national challenge to build technical skills for careers in space and beyond. Finalists will each receive $5,000 and in-kind prizes that they may use to build CubeSat (cube satellite) prototypes in the second phase of the challenge.

Congratulations to the finalists:

    • Anderson Clark Magnet High School (La Crescenta, California) is studying whether local encampments are in high-risk wildfire areas, with the goal of helping the local fire department save lives of people without housing.
    • Freeport High School (Freeport, New York) is measuring Earth’s surface temperature to study the differences in heat absorption and retention between urban and rural areas.
    • Mooresville High School (Mooresville, North Carolina) is measuring the effect of their town’s population growth on air quality, land use, and temperature.
    • Opelika High School (Opelika, Alabama) is collaborating with Columbus High School and Northside High School (Columbus, Georgia). The team plans to collect performance data for a new type of core material used in NASA-grade fluxgate magnetometers, which are used to study Earth’s changing magnetic field.
    • Princeton High School (Princeton, New Jersey) is collaborating with Montgomery High School (Skillman, New Jersey). The team wants to optimize space missions by examining topics such as atmospheric pressure density or habitable planetary environments.

The finalists will now begin work on the second phase of the program:

During Phase 2, which runs from January to May 2021, the finalists will have access to expert mentorship and additional virtual resources as they build CubeSat prototypes and plan flight events to launch their prototypes. The Department understands that due to current conditions, schools will need flexibility to safely collaborate when building and launching prototypes.

The prizes include development kits and expert mentorship donated to the Department from Arduino, Blue Origin, Chevron, EnduroSat, LEGO Education, Magnitude.io, MIT Media Lab Space Exploration Initiative, and XinaBox.

** MIT DeMi testing deformable mirror for hi-res telescope applications: Mini-satellite maker – MIT News | Massachusetts Institute of Technology

Inside the small probe, named DeMi, was a deformable mirror payload that Cahoy and her students designed, along with a miniature telescope and laser test source. DeMi’s mirror corrects the positioning of either the test laser or a star seen by the telescope. On future missions, these mirrors could be used to produce sharper images of distant stars and exoplanets. Showing the mirror can operate successfully in space is also proof that “nanosatellites” like DeMi can serve as nimble, affordable technology stepping-stones in the search for Earth-like planets beyond our solar system.

See also

** The Philippines’ first student-built CubeSat Maya-1 ends two year mission:

Maya-1, the country’s first cube satellite, has completed its mission and flew back to the Earth’s atmosphere after two years.

“Initially, the satellite was expected to stay in orbit for less than a year only, but it had stayed in orbit for about two years and four months,” said Adrian Salces, one of the Filipino graduate students who developed Maya-1, as it returned last Nov. 23.

Maya-1, along with Bhutan-1 of Bhutan and UiTMSAT-1 of Malaysia, are produced under the auspices of the second generation of the Joint Global Multi-Nation BIRDS Satellite Project or the  BIRDS-2 Project of the Kyushu Institute of Technology (Kyutech) in Japan.

Maya-1, a 1U cube satellite (CubeSat) in Japan, was deployed through the Japanese Experimental Module Small Satellite Orbital Deployer (J-SSOD) in the “Kibo” module – the same module used to deploy Diwata-1.

The CubeSat is under the Development of Scientific Earth Observation Microsatellite (PHL-Microsat) program, a research program jointly implemented by the University of the Philippines-Diliman (UPD) and the Advanced Science and Technology Institute of the Department of Science and Technology (DoST-ASTI) in partnership with Kyutech in Japan.

** Students at University of Louisiana at Lafayette built CAPE-3 CubeSat that will ride on Virgin Orbit LauncherOne flight this month. CAPE-3 will m: Eagles to Land First Student Project on Moon to Snap Selfie of Lunar Landing | Aviation Pros

Once the University’s CAPE-3 satellite arrives in space, a spring-loaded mechanism will eject it 225 miles above the Earth’s surface. The small satellite – about 10 centimeters square – will circle the globe about every 90 minutes at 17,000 miles per hour.

Along the way, the satellite will dredge the atmosphere for radiation levels with two instruments – a plastic prototype chip about the size of a pencil eraser and a small Geiger counter.

** AMSAT news on student and amateur CubeSat/smallsat projects:

ANS-313 AMSAT News Service Weekly Bulletin for Nov.19

  • Australian Space Communications Station To Feature Optical Data Transfer
  • WB4APR Seeking high power VHF stations for Leonids Meteor Shower
  • AMSAT Italia and Italian Space Agency ISS STEAM agreement
  • ORI sponsors the M17 VOCODER and hardware development
  • Changes to AMSAT-NA TLE Distribution for November ##, 2020
  • ARISS News
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over
  • Tips for the New Operator – Mobile Apps

ANS-327 AMSAT News Service Weekly Bulletins for Nov. 22

  • SpaceX Dragon Capsule Ferries Four Radio Amateurs to the ISS
  • September/October Issue Of The AMSAT Journal Is Now Available
  • New Launch Date for EASAT-2 and Hades Satellites
  • Arecibo Observatory Faces Demolition After Cable Failures
  • DX Portable Operation Planned From Thailand Grid NK99
  • Human Error Blamed For Vega Launch Failure
  • Changes to AMSAT-NA TLE Distribution for November 19
  • Moscow Aviation Institute Plans SSTV Event from ISS
  • ARISS News
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over

ANS-334 AMSAT News Service Weekly Bulletins for Nov. 29

  • Happy 7th Birthday AMSAT-OSCAR 73 (FUNcube-1)
  • Neutron-1 Signals Received
  • GridMaster Awards #20-#25 Issued
  • Changes to the AMSAT TLE Distribution for November 26th
  • ARISS News
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Upcoming Satellite Operations
  • Satellite Shorts from All Over

ANS-341 AMSAT New Service Weekly Bulletin for Dec. 6

  • Launch Window for AMSAT’s RadFxSat-2/Fox-1E Opens December 19, 2020
  • FoxTelem 1.09 Released
  • VUCC Awards-Endorsements for December 2020
  • FO-29 operation schedule for December 2020 and January 2021
  • IARU Coordinates Frequencies for Three Satellites in November
  • Orbital Mechanics for Dummies
  • Brandmeister DMR Network Announces Password Implementation
  • Upcoming Satellite Operations
  • ARISS News
  • Satellite Shorts from All Over

General CubeSat/SmallSat info:

** Adler-1 cubesat – hunting for bullets in the dark – Austrian Space Forum (OeWF)

** Rhodes College Cubesat Project. November 6, 2020 Meeting of the Memphis Astronomical Society.

** Operating the AMSAT CubeSatSim

**

=== Amazon Ads ===

Amsats and Hamsats:
Amateur Radio and other Small Satellites

======

Amateur Radio Satellite for Beginners

======

Nooelec GOES Weather Satellite RTL-SDR Bundle
Includes NESDR SMArTee XTR Software Defined Radio, &
Everything Else Needed to Receive
LRIT, HRIT & HRPT Satellite Weather Images
Directly from Space!

Student and amateur CubeSat news roundup – Nov.12.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** Teachers In Space‘s Serenity educational CubeSat is ready to go to orbit on the first flight of the Firefly Alpha orbital rocket. The launch is currently planned ro  lift off later this year from Vandenberg AFB in California. Teachers in Space Launch Serenity Satellite – Teachers In Space, Inc.

Serenity will contain several experiments including Gloversville School Districts radiation experiment and Villanova University’s Blockchain technology experiment.

The satellite developed by Teachers in Space is a pioneer CubeSat (CubeSat.org), that will provide low cost opportunities to test educational experiments in space. Teachers in space has previously guided high schools and other academic institutions in developing and flying experiments sub-orbitally with high altitude balloons, stratospheric gliders and rockets. This will be the first orbital satellite mission for TIS.

The Serenity CubeSat. Credits: Teachers in Space

The Serenity satellite will be carrying a suite of data sensors and a camera that will be sending data back to Earth through the use of HAM radio signals. There will be several ground stations connecting with the satellite during its orbital period. These ground stations will be collecting data and pictures sent back down to Earth.

How to communicate with Serenity. The best option is to connect with a local HAM radio club. They may have the equipment already set up to track satellites. If they do not, they will be able to assist you in finding one that does.

More about the VIlianova blockchain networking experiment on the Serenity spacecraft: The First Ethereum Network-Blockchain Satellite From Villanova University Set For Orbit – SatNews

This experiment will prove that blockchain can allow two satellites to reliably complete data transactions without communicating with a ground station to supervise these inter-satellite exchanges. The satellite will remain in LEO for approximately 30 days and controlled blockchain experiments will take place during the first 15 days the satellite is on-orbit.

Professor Sudler noted that the blockchain provides a trusted and immutable means of tracking these exchanges between satellites that may belong to different companies or even different countries.

Villanova researchers will grant 10 non-researchers with experience using blockchains with access to the onboard blockchain for the remainder of the flight for measuring transaction performance under heavier traffic loads. While the satellite is on-orbit, the latter half of the test period will be dedicated to open access from Villanova to perform test transactions between the ground station and the satellite.

The transaction data will be test files (text and images of various file sizes) that will create various loads on the blockchain. These transactions will also be allowed to interact with Ethereum smart contracts (programs that can automatically trigger a new transaction when a specific condition is met). All transactions are permanently recorded on the blockchain ledger.

** Tel Aviv University TAU-SAT1 CubeSat to go to ISS on NG Cygnus cargo resupply mission in early 2021: Tel Aviv University aims to launch shoebox-size satellite next year | The Times of Israel

“[…] TAU-SAT1 is the first nanosatellite designed, built and tested independently in academia in Israel.”

The TAU-SAT1 was created, developed, assembled, and tested at the new Nanosatellite Center in Tel Aviv, an interdisciplinary venture of the Faculties of Engineering and Exact Sciences and the Porter School of the Environment and Earth Sciences of the university.

The primary goal of the mission is to measure space radiation:

The satellite will conduct several experiments while in orbit, including measuring cosmic radiation in space.

“We know that that there are high-energy particles moving through space that originate from cosmic radiation,” said Meir Ariel, director of the university’s Nanosatellite Center. “Our scientific task is to monitor this radiation, and to measure the flux of these particles and their products.

To communicate with the spacecraft, a satellite station was built on the roof of the university’s engineering building.

Students were a part of the team that developed the satellite:

The Tel Aviv University nanosatellite was built and tested with the help of a team of students and researchers, which built all of the infrastructure including cleanrooms, various testing facilities such as the thermal vacuum chamber, and the rooftop receiving and transmission station.

** Queensborough Community College in Bayside, NY receives NASA grant for CubeSat project:

The college is the recipient of a NASA MUREP MISTC-2 (Minority University Research and Education Project — Innovations in Space Technology Curriculum-Group 2). The grant entitled, “Using Technology to Engage and Inspire Students to Explore (SpaceTechEngine),” was funded in the amount of $410,574 for two years. 

Queensborough is partnering on the grant with the NASA Goddard Space Flight Center (GSFC) Mission Engineering and Systems Analysis (MESA) Division, the Atmospheric & Space Technology Research Associates (ASTRA), and City College of New York (CUNY) to capitalize on NASA’s ability to inspire both students and the public. 

Students will work on the Plasma Enhancements in The Ionosphere-Thermosphere Satellite (petitSat), a NASA funded CubeSat mission to be deployed from the International Space Station (ISS) in 2021. 

The petitSat Principal Investigator (PI) is NASA scientist Jeffrey Klenzing. Students will investigate both space weather effects on the ionosphere, which reflects and modifies radio waves used for communication and navigation; and simulate interacting with a CubeSat for preliminary assembly, integration and testing (AI&T).

** Brigham Young students built the Passive Inspection CubeSat (PICS), which is to launch this year, along with nine other NASA sponsored CubeSats, on a Virgin Orbit LauncherOne rocket.: BYU partnering with NASA to send a ‘spacecraft selfie cam’ into space on official mission – BYU.edu

After years of engineering, testing and coordinating with engineers from NASA’s Launch Services Program, Brigham Young University students have created a cube satellite that will launch into space on an official NASA mission later this year.

The 10-centimeter CubeSat, which includes contributions from more than 60 students over a five-year period, is outfitted with cameras on all six sides and will make it possible to inexpensively detect damage on the exterior of a spacecraft that cannot be seen in other ways.

“It’s a satellite that is designed to take pictures of another satellite,” said BYU engineering professor David Long. “In other words, it’s a spacecraft selfie cam.”

Passive Inspection CubeSat (PICS) at Brigham Young Univ. Credits: BYU Spacecraft Group

See also This BYU camera is launching into orbit to take photos of NASA spacecraft | KSL.com.

Here is a video about the project:

BYU engineers are preparing to launch a CubeSat that will float in space and take images of a spacecraft in orbit and then transmit those images back to Earth. The 10-centimeter CubeSat, outfitted with cameras on all six sides, works like a spacecraft “selfie cam” and will make it possible to inexpensively see the exterior of a spacecraft and detect damage that can’t be seen in other ways. The team received support and sponsorship from NASA’s Launch Services Program as well as from BYU’s Fulton College of Engineering for the mission that is expected to launch in late 2020.

** AMSAT news on student and amateur CubeSat/smallsat projects:

ANS-306 AMSAT News Service Weekly Bulletin

  • Neutron-1 Scheduled for Deployment on November 5th
  • Upcoming Amateur Satellite Launches
  • EO-88 Distance Record Set
  • ARISS News
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Upcoming Satellite Operations
  • Satellite Shorts from All Over

ANS-313 AMSAT News Service Weekly Bulletin

  • Neutron1 Launched from the ISS
  • VUCC Awards-Endorsements for November 2020
  • AMSAT GridMaster Award
  • IARU Coordinates Frequencies for Six Satellites in October
  • ARISS Team Attends ISS National Lab Education Summit
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • ARISS News
  • Satellite Shorts from All Over

General CubeSat/SmallSat info:

** Two new  introductory books on amateur satellite radio. The first is from the Amateur Radio Relay League (ARRL):

You can make contacts through amateur radio satellites, and even with the International Space Station, using equipment you probably own right now! All it takes is the right information, which you ll find in Amateur Radio Satellites for Beginners. There are dozens of spacecraft in orbit just waiting for your signals, and more are being launched every year. This book is your guide to a whole new world of operating enjoyment. Inside you will: Be able to locate satellites and determine when they will be available in orbit. Gain tips for building your own satellite station even if it s just a dual-band FM transceiver and a mobile antenna. Find a simple step-by-step guide to making your first contacts. Discover satellite antenna projects you can build at home. Amateur Radio Satellites for Beginners will introduce you to new experiences that you may have thought were out of your reach. Start reading and discover how easy it can be!

Amsats and Hamsats provides a step by step guide to how you can communicate through amateur radio satellites and how to receive signals from other small satellites and ‘weather’ satellites. The book gets right into the techniques you will need for working amateur radio stations through amateur radio satellites, then moves on to listening, or watching, signals from other satellites. There are chapters answering questions like, ‘how do satellites stay in orbit’ and ‘why are they so expensive to launch?’ Followed by sections about the history of amateur radio satellites, the mathematics governing orbits, TLE files, different types of satellite and their orbits. It covers the equipment you need, to track and use the amateur satellites and some of the satellite tracking software that is available. There are detailed sections covering transponders, satellite bands, feeders, masthead preamplifiers, antenna systems and automated rotator control. Plus chapters on the FUNcube Satellites, Weather Satellites and even the International Space Station. Amsats and Hamsats provides the ultimate guide to operating satellites and how they work. Its 368 pages are a great value guide to this stimulating and challenging area of amateur radio activity. Whether you want to get started or you are already an experienced operator you will find something of value in these pages.

** ADLER-1 cubesat – hunting for bullets in the dark

Space is a common good, just like the ocean 🌊 and the atmosphere 🌠. And as such it is subject for pollution. It is time to get more in-orbit data on this problem. With ADLER-1 cubesat we will find the “fast bullets in the dark”. How will this work? Have a look at our video ⤵️

** MicroGEO Satellites, Software-defined Radio and Getting the World OnlineConstellations Podcast – YouTube

** Jeff Greason discusses concepts for using space plasma for propulsion. Near the end of the video, he talks about the use of smallsats to test implementations of such systems. The Plasma Magnet, for example, has been extensively tested on the ground and now needs to be proven in space. The Plasma Magnet NASA Institute for Advanced Concepts  – Phase I Final Report – John Slough, Univ. of Washington (pdf).

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

Low cost GOES weather satellite stations

Home systems for GOES weather satellite image reception are now quite affordable. Nooele currently offers this package for just $179 at Amazon: Nooelec GOES Weather Satellite RTL-SDR Bundle[Amazon commission link]

Includes NESDR SMArTee XTR Software Defined Radio, & Everything Else Needed to Receive LRIT, HRIT & HRPT Satellite Weather Images Directly from Space!”

    • This bundle will allow you to receive detailed, high-resolution, near real-time images from orbiting weather satellites. With as little as an hour of setup, you will be receiving LRIT, HRIT and HRPT GOES transmissions, error-free and with ease!
    • This GOES Weather Satellite SDR bundle includes a GOES parabolic reflector antenna, NESDR SMArTee XTR SDR receiver, SAWbird+ GOES LNA module, 10m LMR400 cable, and the other cables and adapters required for a full GOES receiver. Just add a host device and software, and you are ready to go
    • The 21dBi antenna is meant for high gain L-band applications where the antenna is stationary. The center frequency is 1.75GHz, and bandwidth is 200MHz or greater. This encompasses many popular weather satellite applications and constellations
    • Software is required for the decoding of images. Current options are either free Linux-based decoders or a paid version of XRIT Decoder for Windows (a license is NOT included in this bundle!). A virtual machine can be used for Linux instead of a standalone Linux computer or Raspberry Pi, if preferred.

 

===

Check out out USA-Satcom for news and information on amateur satellite communications.

=== Amazon Ad ===

Amsats and Hamsats:
Amateur Radio and other Small Satellites