Category Archives: Astronomy

ESO: New hi-res imagery reveals the beautiful complexity of the Tarantula Nebula

The latest report from ESO (European Southern Observatory):

A Crowded Neighbourhood

Glowing brightly about 160 000 light-years away, the Tarantula Nebula is the most spectacular feature of the Large Magellanic Cloud, a satellite galaxy to our Milky Way. This image from VLT Survey Telescope at ESO’s Paranal Observatory in Chile shows the region and its rich surroundings in great detail. It reveals a cosmic landscape of star clusters, glowing gas clouds and the scattered remains of supernova explosions. [Larger versions]
Glowing brightly about 160 000 light-years away, the Tarantula Nebula is the most spectacular feature of the Large Magellanic Cloud, a satellite galaxy to our Milky Way. The VLT Survey Telescope at ESO’s Paranal Observatory in Chile has imaged this region and its rich surroundings in exquisite detail. It reveals a cosmic landscape of star clusters, glowing gas clouds and the scattered remains of supernova explosions. This is the sharpest image ever of this entire field.

Taking advantage of the capacities of the VLT Survey Telescope (VST) at ESO’s Paranal Observatory in Chile, astronomers captured this very detailed new image of the Tarantula Nebula and its numerous neighbouring nebulae and star clusters. The Tarantula, which is also known as 30 Doradus, is the brightest and most energetic star-forming region in the Local Group of galaxies.

The Tarantula Nebula, at the top of this image, spans more than 1000 light-years and is located in the constellation of Dorado (The Dolphinfish) in the far southern sky. This stunning nebula is part of the Large Magellanic Cloud, a dwarf galaxy that measures about 14 000 light-years across. The Large Magellanic Cloud is one of the closest galaxies to the Milky Way.

At the core of the Tarantula Nebula lies a young, giant star cluster called NGC 2070, a starburst region whose dense core, R136, contains some of the most massive and luminous stars known. The bright glow of the Tarantula Nebula itself was first recorded by French astronomer Nicolas-Louis de Lacaille in 1751.

Another star cluster in the Tarantula Nebula is the much older Hodge 301, in which at least 40 stars are estimated to have exploded as supernovae, spreading gas throughout the region. One example of a supernova remnant is the superbubble SNR N157B, which encloses the open star cluster NGC 2060. This cluster was first observed by British astronomer John Herschel in 1836, using an 18.6-inch reflector telescope at the Cape of Good Hope in South Africa. On the outskirts of the Tarantula Nebula, on the lower right-hand side, it is possible to identify the location of the famous supernova SN 1987A [1].

Moving to the left-hand side of the Tarantula Nebula, one can see a bright open star cluster called NGC 2100, which displays a brilliant concentration of blue stars surrounded by red stars. This cluster was discovered by Scottish astronomer James Dunlop in 1826 while working in Australia, using his self-built 9-inch (23-cm) reflecting telescope.

At the centre of the image is the star cluster and emission nebula NGC 2074, another massive star-forming region discovered by John Herschel. Taking a closer look one can spot a dark seahorse-shaped dust structure — the “Seahorse of the Large Magellanic Cloud”. This is a gigantic pillar structure roughly 20 light-years long — almost five times the distance between the Sun and the nearest star, Alpha Centauri. The structure is condemned to disappear over the next million years; as more stars in the cluster form, their light and winds will slowly blow away the dust pillars.

Obtaining this image was only possible thanks to the VST’s specially designed 256-megapixel camera called OmegaCAM. The image was created from OmegaCAM images through four different coloured filters, including one designed to isolate the red glow of ionised hydrogen [2].

Notes
[1] SN 1987A was the first supernova to be observed with modern telescopes and the brightest since Kepler’s Star in 1604. SN 1987A was so intense that it blazed with the power of 100 million suns for several months following its discovery on 23 February 1987.

[2] The H-alpha emission line is a red spectral line created when the electron inside a hydrogen atom loses energy. This happens in hydrogen around hot young stars when the gas becomes ionised by the intense ultraviolet radiation and electrons subsequently recombine with protons to form atoms again. The ability of OmegaCAM to detect this line allows astronomers to characterise the physics of giant molecular clouds where new stars and planets form.

This chart shows the location of the dramatic star formation region known as the Tarantula Nebula in the constellation of Dorado (The Dolphinfish). This map shows most of the stars visible to the unaided eye under good conditions, and the the region of sky covered by this image is shown with a red rectangle. The Tarantula is visible to the naked eye and the whole region is spectacular through a telescope.

Videos: TMRO Orbit 11.21 – Riverside Telescope Makers Conference

The latest episode of TMRO.tv Space is now available on line at: Riverside Telescope Makers Conference – Orbit 11.21 – TMRO

We have Space Mike at the @ISDC 2018 Expo and Jared at the @RTMCAstroExpo 2018 Astronomy Expo! Jared sits down with Martin Carey and Travis Holmes to talk about citizen astronomy.

Launches and news topics covered:

Launches:
Long March 4C Launches Queqiao Lunar Relay
Antares launches Cygnus OA-9 mission to ISS
Falcon 9 Launches Iridium-6 and GRACE-FO

Space News:
Grande-sized black holes
More former GXLP teams have announced future landing plans
RocketLab “It’s Business Time” update

TMRO is supported by viewers:

TMRO shows are crowd funded. If you like this episode consider contributing to help us to continue to improve. Head over to http://www.patreon.com/tmro for funding levels, goals and all of our different rewards!

===

Other recent TMRO videos

====

TESS: First test image released from new exoplanet orbital observatory

The new exoplanet finder TESS tries out its camera and gets a shot of a whole lot of stars:

NASA’s New Planet Hunter Snaps Initial Test Image, Swings by Moon

This test image from one of the four cameras aboard the Transiting Exoplanet Survey Satellite (TESS) captures a swath of the southern sky along the plane of our galaxy. TESS is expected to cover more than 400 times the amount of sky shown in this image when using all four of its cameras during science operations. Credits: NASA/MIT/TESS

NASA’s next planet hunter, the Transiting Exoplanet Survey Satellite (TESS), is one step closer to searching for new worlds after successfully completing a lunar flyby on May 17. The spacecraft passed about 5,000 miles from the Moon, which provided a gravity assist that helped TESS sail toward its final working orbit.

As part of camera commissioning, the science team snapped a two-second test exposure using one of the four TESS cameras. The image, centered on the southern constellation Centaurus, reveals more than 200,000 stars. The edge of the Coalsack Nebula is in the right upper corner and the bright star Beta Centauri is visible at the lower left edge. TESS is expected to cover more than 400 times as much sky as shown in this image with its four cameras during its initial two-year search for exoplanets. A science-quality image, also referred to as a “first light” image, is expected to be released in June.

TESS will undergo one final thruster burn on May 30 to enter its science orbit around Earth. This highly elliptical orbit will maximize the amount of sky the spacecraft can image, allowing it to continuously monitor large swaths of the sky. TESS is expected to begin science operations in mid-June after reaching this orbit and completing camera calibrations.

Launched from Cape Canaveral Air Force Station in Florida on April 18, TESS is the next step in NASA’s search for planets outside our solar system, known as exoplanets. The mission will observe nearly the entire sky to monitor nearby, bright stars in search of transits — periodic dips in a star’s brightness caused by a planet passing in front of the star. TESS is expected to find thousands of exoplanets. NASA’s upcoming James Webb Space Telescope, scheduled for launch in 2020, will provide important follow-up observations of some of the most promising TESS-discovered exoplanets, allowing scientists to study their atmospheres.

TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, based in Dulles, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; and the Space Telescope Science Institute in Baltimore. The TESS science instruments were jointly developed by MIT’s Kavli Institute for Astrophysics and Space Research and MIT’s Lincoln Laboratory. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

====

ESO: ALMA and VLT see signs of stars forming just 250M years after the Big Bang

The latest news from ESO (European Southern Observatory):

ALMA and VLT Find Evidence for Stars Forming
Just 250 Million Years After Big Bang

This image shows the galaxy cluster MACS J1149.5+2223 taken with the NASA/ESA Hubble Space Telescope; the inset image is the very distant galaxy MACS1149-JD1, seen as it was 13.3 billion years ago and observed with ALMA. Here, the oxygen distribution detected with ALMA is depicted in red. [Larger images]

Astronomers have used observations from the Atacama Large Millimeter/submillimeter Array (ALMA) and ESO’s Very Large Telescope (VLT) to determine that star formation in the very distant galaxy MACS1149-JD1 started at an unexpectedly early stage, only 250 million years after the Big Bang. This discovery also represents the most distant oxygen ever detected in the Universe and the most distant galaxy ever observed by ALMA or the VLT. The results will appear in the journal Nature on 17 May 2018.

An international team of astronomers used ALMA to observe a distant galaxy called MACS1149-JD1. They detected a very faint glow emitted by ionised oxygen in the galaxy. As this infrared light travelled across space, the expansion of the Universe stretched it to wavelengths more than ten times longer by the time it reached Earth and was detected by ALMA. The team inferred that the signal was emitted 13.3 billion years ago (or 500 million years after the Big Bang), making it the most distant oxygen ever detected by any telescope [1]. The presence of oxygen is a clear sign that there must have been even earlier generations of stars in this galaxy.

“I was thrilled to see the signal of the distant oxygen in the ALMA data,” says Takuya Hashimoto, the lead author of the new paper and a researcher at both Osaka Sangyo University and the National Astronomical Observatory of Japan“This detection pushes back the frontiers of the observable Universe.”

In addition to the glow from oxygen picked up by ALMA, a weaker signal of hydrogen emission was also detected by ESO’s Very Large Telescope (VLT). The distance to the galaxy determined from this observation is consistent with the distance from the oxygen observation. This makes MACS1149-JD1 the most distant galaxy with a precise distance measurement and the most distant galaxy ever observed with ALMA or the VLT.

“This galaxy is seen at a time when the Universe was only 500 million years old and yet it already has a population of mature stars,” explains Nicolas Laporte, a researcher at University College London (UCL) in the UK and second author of the new paper. “We are therefore able to use this galaxy to probe into an earlier, completely uncharted period of cosmic history.”

For a period after the Big Bang there was no oxygen in the Universe; it was created by the fusion processes of the first stars and then released when these stars died. The detection of oxygen in MACS1149-JD1 indicates that these earlier generations of stars had been already formed and expelled oxygen by just 500 million years after the beginning of the Universe.

But when did this earlier star formation occur? To find out, the team reconstructed the earlier history of MACS1149-JD1 using infrared data taken with the NASA/ESA Hubble Space Telescope and the NASA Spitzer Space Telescope. They found that the observed brightness of the galaxy is well-explained by a model where the onset of star formation corresponds to only 250 million years after the Universe began [2].

The maturity of the stars seen in MACS1149-JD1 raises the question of when the very first galaxies emerged from total darkness, an epoch astronomers romantically term “cosmic dawn”. By establishing the age of MACS1149-JD1, the team has effectively demonstrated that galaxies existed earlier than those we can currently directly detect.

Richard Ellis, senior astronomer at UCL and co-author of the paper, concludes:

“Determining when cosmic dawn occurred is akin to the Holy Grail of cosmology and galaxy formation. With these new observations of MACS1149-JD1 we are getting closer to directly witnessing the birth of starlight! Since we are all made of processed stellar material, this is really finding our own origins.”

Notes

[1] ALMA has set the record for detecting the most distant oxygen several times. In 2016, Akio Inoue at Osaka Sangyo University and his colleagues used ALMA to find a signal of oxygen emitted 13.1 billion years ago. Several months later, Nicolas Laporte of University College London used ALMA to detect oxygen 13.2 billion years ago. Now, the two teams combined their efforts and achieved this new record, which corresponds to a redshift of 9.1.

[2] This corresponds to a redshift of about 15.

This image shows the huge galaxy cluster MACS J1149.5+223, whose light took over 5 billion years to reach us. The huge mass of the cluster is bending the light from more distant objects. The light from these objects has been magnified and distorted due to gravitational lensing. The same effect is creating multiple images of the same distant objects. [ Larger images]

Video: “In Saturn’s Rings” shows space exploration at its most spectacular

The new documentary film In Saturn’s Rings, narrated by LeVar Burton, shows striking scenes of space travel and exploration using only actual images observed with telescopes, space probes, and astronaut cameras. No computer generated artists’ creations are included but techniques developed by Ken Burns and Walt Disney give 3-D impressions of objects like Saturn and its rings. The super high-resolution film will be available on “Giant Screen, IMAX, Fulldome Planetariums“. Check out the trailer for the film:

From the caption:

In Saturn’s Rings is a groundbreaking giant-screen movie adventure that takes audiences on a space exploration journey of the mind, heart, and spirit, from the Big Bang to the awe-inspiring rings of Saturn.

Narrated by LeVar Burton, In Saturn’s Rings is created entirely of more than 7.5 million stunning images of Earth, the Milky Way, and the Saturn taken by Hubble, Cassini, and other NASA space telescopes looking deep into the past.

The film is made with 2D multiplane parallax techniques developed by Walt Disney combined with Ken Burns technique to avoid using any type of camera projection, 3D models, visual FX, texture maps etc. We also feature some high resolution time lapse photography.

Visit insaturnsrings.com to learn more about how this film was made, screening and release info and more. 

Trailer music is custom version of track from Neumann Films.

Updates on when and where the film will be shown are available at In Saturn’s Rings (@InSaturnsRings) | Twitter

====