Video: Webcast of Breakthrough Initiatives conference at Stanford Univ.

The Breakthrough Initiatives is holding a symposium at Stanford today and tomorrow. The theme is “Alien Life” – Diversity in the Universe.

You can watch the presentations via the live webcast:

Here is the schedule:

Day 1 Schedule: Presenters/Panelists

Live on YouTube: youtu.be/nFoTyKGHdLc

Pacific Time USA

09:00 Welcome to Breakthrough Discuss 2018: Hosts Charles Alcock, Penelope Boston, Jamie Drew, Peter Michelson, S. Pete Worden
09:15 Keynote: Carolyn Porco, “Enceladus: Little Moon, Big Possibilities”
10:00 Session One: Search for Life in our Solar System: Chairs Penelope Boston, Chris McKay
10:10 David Smith, “Why Aren’t Clouds Green?”
10:30 David Grinspoon, “The Case for Venus: Life in Acid Clouds?”
10:50 Britney Schmidt, “Robots Under the Ice, and One Day, In Space?”
11:25 Alfonso Davila, “Search for Life Beyond Earth: Motive, Means and Opportunity”
11:45 Morgan Cable, “Dragonfly: In situ exploration of Titan’s prebiotic organic chemistry and habitability”
12:05 Penelope Boston, “Wherever You Go, There You Are: The Questions That Drive the Destinations”
13:40 Panel One: Search for Life in our Solar Systems: Chairs Penelope Boston, Chris McKay, Panelists Dale Anderson, Steven Benner, Nathalie Cabrol, Cynthia Philips, Carol Stoker
15:10 Session Two: Possibilities for Non-Terran Life in the Universe: Chairs Svetlana Berdyugina, Lisa Kaltenegger
15:20 Lynn Rothschild, “Universal Biology: Investigating Life as it Must Be”
15:40 Steve Benner, “Chemical Constraints on Non-Earth Life”
16:00 Sara Seager, “A New View of Life’s Journey Through Chemical Space”
16:30 Charles Ofria, “Using Artificial Life to Uncover Universal Evolutionary Dynamics”
16:50 Emilio Enriquez, “Searching for lifeform-independent technosignatures
17:10 Lee Cronin, “The Evolution of Inorganic Life in the Universe

Day 2 Schedule: Presenters/Panelists

Live on YouTube: youtu.be/3GiN-tWAV_k

Pacific Time USA

09:00 Welcome Remarks, S. Pete Worden
09:10 Keynote: Martin Rees, “Will SETI Detect Organic or Electronic Intelligence?”
10:05 Panel Two: Possibilities for Non-Terran Life in the Universe:
Chairs Svetlana Berdyugina, Lisa Kaltenegger, Panelists Penelope Boston, Chris McKay, Anders Sandberg , Clara Sousa-Silva, Sara Walker
12:30 Session Three: Progress in Novel Space Propulsion: Chairs Sigrid Close, Zachary Manchester
12:40 Sonny White, “Pilot Wave Model for Impulsive Thrust from RF Test Device”
13:00 Ryan Weed, “Scaled Radioisotope Positron Propulsion for Interstellar Spacecraft”
13:20 Geoffrey Landis, “Sails: From the Solar System to the Stars”
13:50 Robert Zubrin, “Dipole Drive for Space Propulsion”
14:10 Kevin Parkin “Progress in Beamed Energy Propulsion”
14:30 Les Johnson, “Solar and Electric Sailing: Stepping Stones to the Stars”
15:00 Panel Three: Progress in Novel Space Propulsion:
Chairs Sigrid Close, Zachary Manchester, Panelists Elena Ancona, Harry Atwater, Heidi Fearn, Mateusz Józefowicz, Kelvin Long

====

Video: TMRO Orbit 11.14 – Neumann Space

The latest TMRO.tv episode is now available: Neumann Space – Orbit 11.14 – TMRO

Paddy Neumamm, Chief Scientist and Founder of Neumann Space joins us to talk about their solar-electric ion drive. The Neumann Drive can run on a variety of solid metallic fuels. This means that the Neumann Drive can run on nearly any metal likely to be found in asteroids, as well as on sintered-down space junk. So not only can you go further with a Neumann Drive, but you can refuel with whatever you find when you get there.

Launches and news topics covered:

Launches
SpaceX CRS-14 mission
Ariane 5 launches Superbird 8/DSN 1 and Hylas 4 satellites

News:
British-led exoplanet telescope selected as ESA’s next space science mission
VSS Unity has first powered flight
Does Venus’ Clouds Have Life?

TMRO is viewer supported:

TMRO shows are crowd funded. If you like this episode consider contributing to help us to continue to improve. Head over to http://www.patreon.com/tmro for per-episode contribution or http://www.makersupport.com/tmro for monthly contributions and reward information.

A couple of short SpacePod reports:

====

Juno video: An infrared tour of Jupiter’s North Pole

Latest findings from NASA’s Juno probe orbiting Jupiter:

NASA Juno Gives Infrared Tour of Jupiter’s North Pole

In this animation the viewer is taken low over Jupiter’s north pole to illustrate the 3-D aspects of the region’s central cyclone and the eight cyclones that encircle it. The movie utilizes imagery derived from data collected by the Jovian Infrared Auroral Mapper (JIRAM) instrument aboard NASA’s Juno mission during its fourth pass over the massive planet. Infrared cameras are used to sense the temperature of Jupiter’s atmosphere and provide insight into how the powerful cyclones at Jupiter’s poles work. In the animation, the yellow areas are warmer (or deeper into Jupiter’s atmosphere) and the dark areas are colder (or higher up in Jupiter’s atmosphere). In this picture the highest “brightness temperature” is around 260K (about -13°C) and the lowest around 190K (about -83°C). The “brightness temperature” is a measurement of the radiance, at 5 µm, traveling upward from the top of the atmosphere towards Juno, expressed in units of temperature.

Scientists working on NASA’s Juno mission to Jupiter shared a 3-D infrared movie depicting densely packed cyclones and anticyclones that permeate the planet’s polar regions, and the first detailed view of a dynamo, or engine, powering the magnetic field for any planet beyond Earth. Those are among the items unveiled during the European Geosciences Union General Assembly in Vienna, Austria, on Wednesday, April 11.

Juno mission scientists have taken data collected by the spacecraft’s Jovian InfraRed Auroral Mapper (JIRAM) instrument and generated the 3-D fly-around of the Jovian world’s north pole. Imaging in the infrared part of the spectrum, JIRAM captures light emerging from deep inside Jupiter equally well, night or day. The instrument probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below Jupiter’s cloud tops. The imagery will help the team understand the forces at work in the animation – a north pole dominated by a central cyclone surrounded by eight circumpolar cyclones with diameters ranging from 2,500 to 2,900 miles (4,000 to 4,600 kilometers).

“Before Juno, we could only guess what Jupiter’s poles would look like,” said Alberto Adriani, Juno co-investigator from the Institute for Space Astrophysics and Planetology, Rome. “Now, with Juno flying over the poles at a close distance it permits the collection of infrared imagery on Jupiter’s polar weather patterns and its massive cyclones in unprecedented spatial resolution.”

Another Juno investigation discussed during the media briefing was the team’s latest pursuit of the interior composition of the gas giant. One of the biggest pieces in its discovery has been understanding how Jupiter’s deep interior rotates.

“Prior to Juno, we could not distinguish between extreme models of Jupiter’s interior rotation, which all fitted the data collected by Earth-based observations and other deep space missions,” said Tristan Guillot, a Juno co-investigator from the Université Côte d’Azur, Nice, France. “But Juno is different — it orbits the planet from pole-to-pole and gets closer to Jupiter than any spacecraft ever before. Thanks to the amazing increase in accuracy brought by Juno’s gravity data, we have essentially solved the issue of how Jupiter’s interior rotates: The zones and belts that we see in the atmosphere rotating at different speeds extend to about 1,900 miles (3,000 kilometers).

“At this point, hydrogen becomes conductive enough to be dragged into near-uniform rotation by the planet’s powerful magnetic field.”

The same data used to analyze Jupiter’s rotation contain information on the planet’s interior structure and composition. Not knowing the interior rotation was severely limiting the ability to probe the deep interior.

“Now our work can really begin in earnest — determining the interior composition of the solar system’s largest planet,” said Guillot.

At the meeting, the mission’s deputy-principal investigator, Jack Connerney of the Space Research Corporation, Annapolis, Maryland, presented the first detailed view of the dynamo, or engine, powering the magnetic field of Jupiter.

NASA’s Juno mission has provided the first view of the dynamo, or engine, powering Jupiter’s magnetic field. The new global portrait reveals unexpected irregularities and regions of surprising magnetic field intensity. Red areas show where magnetic field lines emerge from the planet, while blue areas show where they return. As Juno continues its mission, it will improve our understanding of Jupiter’s complex magnetic environment.

Connerney and colleagues produced the new magnetic field model from measurements made during eight orbits of Jupiter. From those, they derived maps of the magnetic field at the surface and in the region below the surface where the dynamo is thought to originate. Because Jupiter is a gas giant, “surface” is defined as one Jupiter radius, which is about 44,400 miles (71,450 kilometers).

These maps provide an extraordinary advancement in current knowledge and will guide the science team in planning the spacecraft’s remaining observations.

“We’re finding that Jupiter’s magnetic field is unlike anything previously imagined,” said Connerney. “Juno’s investigations of the magnetic environment at Jupiter represent the beginning of a new era in the studies of planetary dynamos.”

The map Connerney’s team made of the dynamo source region revealed unexpected irregularities, regions of surprising magnetic field intensity, and that Jupiter’s magnetic field is more complex in the northern hemisphere than in the southern hemisphere. About halfway between the equator and the north pole lies an area where the magnetic field is intense and positive. It is flanked by areas that are less intense and negative. In the southern hemisphere, however, the magnetic field is consistently negative, becoming more and more intense from the equator to the pole.

The researchers are still figuring out why they would see these differences in a rotating planet that’s generally thought of as more-or-less fluid.

“Juno is only about one third the way through its planed mapping mission and already we are beginning to discover hints on how Jupiter’s dynamo works,” said Connerney. “The team is really anxious to see the data from our remaining orbits.”  

Juno has logged nearly 122 million miles (200 million kilometers) to complete those 11 science passes since entering Jupiter’s orbit on July 4, 2016. Juno’s 12th science pass will be on May 24.

NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. The Italian Space Agency (ASI), contributed two instruments, a Ka-band frequency translator (KaT) and the Jovian Infrared Auroral Mapper (JIRAM). Lockheed Martin Space, Denver, built the spacecraft.

The public can follow the mission on Facebook and Twitter at:

More information on Jupiter can be found at: https://www.nasa.gov/jupiter

Videos: TMRO Orbit 11.11: Why we need to humanize space exploration + 11.10: Searching for Skylab

The latest episode of TMRO.tv Space is now available: Space: Why we need to humanize space exploration – Orbit 11.11

This week Lisa chats to Dr Niamh Shaw about her new theatre show ‘Diary of a Martian Beekeeper’ and why we need to include the humanities in space exploration.

News topics and launches covered:

News:
Microbe That Could Survive On Enceladus
Lightfoot to retire as Bridenstine nomination stalled
S-2 Is Single and Ready to Mingle…With Our SMBH
International interest for Lunar Gateway grows

Launches:
Long March 2 Launches LKW-4

===

And here is the previous week’s episode: Searching for Skylab updates – Orbit 11.10 – TMRO

This week Jared gets an update from Dwight Steven-Boniecki about the upcoming documentary “Searching for Skylab”, including some exclusive sneak peaks from the film!

News topics and Launches covered:

News:
Interstellar donuts
World’s First Air Breathing Electric Thruster Tested
Schrödinger in Space

Launches:
SpaceX Launches Hispasat 30W-6
Soyuz Launches O3b Satellites

TMRO is viewer supported:

TMRO shows are crowd funded. If you like this episode consider contributing to help us to continue to improve. Head over to http://www.patreon.com/tmro for per-episode contribution or http://www.makersupport.com/tmro for monthly contributions and reward information.

====