Student and amateur CubeSat news roundup – Aug.19.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** US Dept. of Education opens CubeSat mission competition for high school students: U.S. Department of Education Launches Space Mission Challenge for High School Students: CTE Mission: CubeSat Challenge seeks to inspire, prepare students for a future in aerospace | U.S. Department of Education

Building on the Administration-wide commitment to expand student interest in the booming science, technology, engineering and math (STEM) fields, the U.S. Department of Education today launched CTE Mission: CubeSat, a national challenge to inspire students to build technical skills for careers in space and beyond. High school students from across the country are invited to design and build CubeSat (cube satellite) prototypes, or satellites that aid in space research, bringing space missions out of the clouds and into the classroom.

“This is such an exciting way to rethink education and get students engaged in hands-on learning in the growing aerospace and technology fields,” said U.S. Secretary of Education Betsy DeVos. “I look forward to seeing the innovative prototypes students develop and hope this challenge inspires our next generation of American space explorers.”

Investors predict that space will be the next trillion-dollar industry, and as missions in space continue to expand, so do the career opportunities. This multi-phase challenge offers high school students across the United States the chance to build CubeSat prototypes while learning creative, collaborative, and technical skills for 21st century careers.

Schools interested in entering CTE Mission: CubeSat should form a team and submit a mission proposal by 5:59 p.m. ET, on Oct. 16, 2020 — no in-person collaboration or prior experience with CubeSats is required. The online submission form asks for school information, a team profile, a project proposal, and anticipated learning outcomes. Curated educational resources are available to students and teachers online in the CTE Mission: CubeSat resource hub. To learn more, schools can join a virtual information session on Sept. 1.

Up to five finalists will be selected to receive prizes and participate in Phase 2, which runs from January to May 2021. Finalists will have access to expert mentorship and additional virtual resources as they build CubeSat prototypes and plan flight events to launch their prototypes. The Department understands that due to current conditions, schools will need flexibility to safely collaborate when designing and building prototypes during the challenge. The Department looks forward to the creative solutions in the mission proposals it receives as challenge entries.

Each finalist will receive an equal share of the $25,000 cash prize pool, as well as satellite development, hardware, and software kits. Challenge sponsors include Arduino, Blue Origin, Chevron, EnduroSat, LEGO Education,, MIT Media Lab, and XinaBox.

Find more about the competition at the CTE Mission: CubeSat blog. See, for example, Small yet mighty: CubeSats are transforming the future of space discovery — and education – CTE Mission: CubeSat

Diagram of the primary components of a CubeSat.

** Norwegian university team building HYPSO-1 CubeSat to study ocean algae blooms.The NTNU SmallSat Lab at the Norwegian University of Science & Technology is developing a miniature hyper-spectral camera system for the mission. The 6U CubeSat is to be launched later this year.

The HYPer-Spectral smallsat for Ocean observation (HYPSO) will observe oceanographic phenomena via a small satellite with a hyperspectral camera, intelligent on-board processing and robots


The Ocean is of great interest to understand the effects of climate change and human impact on the world.

Traditional EO satellites are very expensive and take several years to develop and launch.

Dedicated SmallSats can be used to provide images of small areas of interest with short revisit times.

The information can be downloaded, and communicated to unmanned vehicles which can investigate the areas of interest further.

The Norwegian company KSAT ( Kongsberg  Satellite Services ) will provide ground support for the mission: KSAT will support Norway’s first hyperspectral Smallsat mission – KSAT

At NTNU Small Satellite Lab, a multi-disciplinary team of master students, PhD-students and professors are currently working on a small satellite with a miniaturized hyperspectral camera for detection of toxic algae blooms along the Norwegian coast. KSAT will as part of this contract, provide commercial ground station services from the Svalbard Ground Station for this mission, called HYPSO-1. KSAT is well known for providing fast and reliable space to ground services. By using the unique ground station at Svalbard, KSAT ensures fast access to the time-critical data.

In combination with drones and autonomous vehicles both on surface and subsea, the goal is to be able to detect and alert the fish-farms about toxic algae blooms in the area. In 2019 a sudden upwelling of toxic algae killed close to 8 million salmon in Norwegian fish farms, wiping out more than half of the annual sales growth in just over a week. The hope is that with the contribution of this mission, one can avoid this in the future.

As a significant provider of maritime monitoring services KSAT had an active role during the algae bloom last year and together with partners in Tromsø they are currently exploring how to discriminate between different types of algae by combining different sensors and applying advanced algorithms.

** The Orbit student smallsat group at NTNU is developing SelfieSat as their first mission.

The SelfieSat, our first project, started out as a simple satellite project; we wanted to make an operational satellite that is able to communicate while it is orbiting earth. However, we wanted to make things a bit more interesting. While SelfieSat is in orbit it will be able to display a selfie of any person on earth, which will be uploaded from our ground station at NTNU. A robotic arm with a camera attached will photograph the screen with the earth in its background. Finally this picture will be sent back to the selfie-taking individual!

A rendering of the SelfieSat CubeSat in development by the Orbit student group at NTNU.

Launch is targeted for the 2020/2021 time frame.

** Univ. of Georgia‘s Small Satellite Research Laboratory (SSRL) building 2 CubeSats for ocean studies: Smallsat Lab @ University of Georgia Building Two For Orbit – SatNews

The primary scientific goals of these cubesat missions are to develop and operate the first moderate resolution coastal ecosystem and ocean color CubeSats in Georgia.

The AFRL mission, the Mapping and Ocean Color Imager (MOCI) will use an onboard RGB camera to take images from multiple perspectives to create a 3D point cloud of land features.

The NASA mission, the SPectral and Ocean Color Satellite (SPOC Sat), will generate hyperspectral moderate resolution imaging products to monitor coastal wetlands status, estuarine water quality, and near-coastal ocean productivity in compliance with some of the NASA’s strategic objectives. The designing and building of the hyperspectral imager for SPOC is being done in house and will have 60 bands to acquire image data between 400 and 850 nm. In addition, the SPOC mission has been chosen as a candidate of NASA’s eight CubeSat Launch Initiative, meaning that SPOC will be launched to the International Space Station for deployment between 2018 and 2020.

Undergraduate students are deeply involved in the two projects:

The two missions and the establishment of the lab have the primary goals of teaching and developing students for STEM careers by training undergraduates in a broad range of fields through hands-on, experiential learning and creating a pipeline for high school students to attend UGA through the Physics and Astronomy Department. While the majority of members in the lab are undergraduates, there are graduate students that serve as mentors. The team currently consists of 45 students from around campus.

Checkout the SSRL poster (pdf) created for the recent Smallsat 2020 conference.

** AMSAT news on student and amateur CubeSat/smallsat projects: ANS-229 AMSAT News Service Special Bulletin

  • Two-Minute Engineering Video Update Available [See the video below]
  • Announced CubeSat Design Specification Rev.14
  • US Department of Defense to Share 3450 – 3550 MHz with 5G Commercial Operations
  • QSO Today Virtual Expo Satellite Presentations Still Available
  • Chinese Mars probe Tianwen-1 successfully received by AMSAT-DL
  • SmallSat 2020 Virtual Conference Proceedings Available Online
  • Upcoming Satellite Operations
  • ARISS News
  • Satellite Shorts from All Over

General CubeSat/SmallSat info:

** AMSAT Engineering Two Minute Update

A light-hearted presentation of the latest status update from AMSAT Engineering.

** Bhutan-1 CubeSat. Bhutan’s first satellite

** SmallSat 2020- Achieving compact and effective thermal solutions for small satellitesAdvanced Cooling Technologies Inc. – YouTube

ACT’s Bryan Muzyka hosts a side meeting for Small Satellite 2020 in a virtual platform. He walks through some of options available for small satellite thermal control. Q&A finishes up the presentation with questions related to CTE mismatch, custom tubing for 3U cards, electric propulsion systems and if heat pipes are suitable for RF environments.

** Hypergiant Galactic Systems SEOPs: Affordable Access to Low Earth OrbitGalactic – Hypergiant

With the advent of mobile phones and mass-produced miniaturized electrical components, satellite construction has become much more affordable. Hypergiant Galactic Systems SEOPs has built a foundation to provide access to space utilizing the International Space Station infrastructure with two launch systems servicing the CubeSat and MicroSat markets. The organization has also built several launch vehicle agnostic products such as dispensers and separation systems with five successful missions.

** The Space Show – Fri. Aug.14.2020Charles Miller discussed “his new company, Lynk Global, connecting mobile phones to [small] satellites for global coverage. We discussed other topics as well, including some of the commercial space history made by our guest.”

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction