New Horizons: Pluto features coming into focus

Here is an image of Pluto taken by the New Horizons and released on Friday”

Houston, We Have Geology

It began as a point of light. Then, it evolved into a fuzzy orb. Now – in its latest portrait from NASA’s New Horizons spacecraft – Pluto is being revealed as an intriguing new world with distinct surface features, including an immense dark band known as the “whale.”

071015_Puto_Image_Annotated%20(2)[1]

Signs of Geology (Annotated) – July 10, 2015:  Tantalizing signs of geology on Pluto are revealed in this image from New Horizons taken on July 9, 2015 from 3.3 million miles (5.4 million kilometers) away. The annotation indicates features described in the text, and includes a reference globe showing Pluto’s orientation in the image, with the equator and central meridian in bold. At this range, Pluto is beginning to reveal the first signs of discrete geologic features. This image views the side of Pluto that always faces its largest moon, Charon, and includes the so-called “tail” of the dark whale-shaped feature along its equator. (The immense, bright feature shaped like a heart had rotated from view when this image was captured. Among the structures tentatively identified in this new image are what appear to be polygonal features; a complex band of terrain stretching east-northeast across the planet, approximately 1,000 miles long; and a complex region where bright terrains meet the dark terrains of the whale. Click for larger image.  Click here for image with no annotation.

As the newest black and white image from New Horizons’ Long Range Reconnaissance Imager (LORRI) appeared on the screen before members of the science team, they reacted with joy and delight, seeing Pluto as never before. There will be many more moments to come, as new images are received and New Horizons speeds closer to a July 14 flyby after a journey of three billion miles.

“We’re close enough now that we’re just starting to see Pluto’s geology,” said New Horizons program scientist Curt Niebur, NASA Headquarters in Washington, who’s keenly interested in the gray area just above the whale’s “tail” feature. “It’s a unique transition region with a lot of dynamic processes interacting, which makes it of particular scientific interest.”

20150710[1]

Science team members react to the latest New Horizons data from Pluto at the Johns Hopkins University Applied Physics Lab on July 10, 2015. Left to right: Cathy Olkin, Jason Cook, Alan Stern, Will Grundy, Casey Lisse, and Carly Howett. Photo by Michael Soluri.

New Horizons’ latest image of Pluto was taken on July 9, 2015 from 3.3 million miles (5.4 million kilometers) away, with a resolution of 17 miles (27 kilometers) per pixel. At this range, Pluto is beginning to reveal the first signs of discrete geologic features. This image views the side of Pluto that always faces its largest moon, Charon, and includes the so-called “tail” of the dark whale-shaped feature along its equator. (The immense, bright feature shaped like a heart had rotated from view when this image was captured.)

“Among the structures tentatively identified in this new image are what appear to be polygonal features; a complex band of terrain stretching east-northeast across the planet, approximately 1,000 miles long; and a complex region where bright terrains meet the dark terrains of the whale,” said New Horizons principal investigator Alan Stern. “After nine and a half years in flight, Pluto is well worth the wait.”

Follow the New Horizons mission with #PlutoFlyby and on Facebook at: www.facebook.com/new.horizons1

[ All images – Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.]

Video: “Space to Ground” ISS report – July.10.15

This week’s report on activities related to the Int. Space Station:

New Horizons: Best image yet of Pluto and its moon Charon

Pluto and Charon are coming into focus as New Horizons‘ probe nears fly-by. Here are the latest and sharpest images so far:

Pluto and Charon: New Horizons’ Dynamic Duo

They’re a fascinating pair: Two icy worlds, spinning around their common center of gravity like a pair of figure skaters clasping hands. Scientists believe they were shaped by a cosmic collision billions of years ago, and yet, in many ways, they seem more like strangers than siblings.

pluto_charon_150709[1]

The Dynamic Duo – July 9, 2015: New Horizons was about 3.7 million miles (6 million kilometers) from Pluto and Charon when it snapped this portrait late on July 8, 2015. Most of the bright features around Pluto’s edge are a result of image processing, but the bright sliver below the dark “whale,” which is also visible in unprocessed images, is real. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
(Click for larger image.)

A high-contrast array of bright and dark features covers Pluto’s surface, while on Charon, only a dark polar region interrupts a generally more uniform light gray terrain. The reddish materials that color Pluto are absent on Charon. Pluto has a significant atmosphere; Charon does not. On Pluto, exotic ices like frozen nitrogen, methane, and carbon monoxide have been found, while Charon’s surface is made of frozen water and ammonia compounds. The interior of Pluto is mostly rock, while Charon contains equal measures of rock and water ice.

pluto_charon_150709_color_final[1]

The Dynamic Duo, in Color – July 9, 2015: This is the same image of Pluto and Charon from July 8, 2015; color information obtained earlier in the mission from the Ralph instrument has been added. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute. (Click for larger image.)

“These two objects have been together for billions of years, in the same orbit, but they are totally different,” said Principal Investigator Alan Stern of the Southwest Research Institute (SwRI), Boulder, Colorado.

pluto_150709[1]

Pluto, up Close – July 9, 2015: Image of Pluto from the New Horizons’ Long Range Reconnaissance Imager (LORRI), July 8, 2015. Most of the bright features around Pluto’s edge are a result of image processing, but the bright sliver below the dark “whale,” which is also visible in unprocessed images, is real. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Charon is about 750 miles (1200 kilometers) across, about half the diameter of Pluto—making it the solar system’s largest moon relative to its planet. Its smaller size and lower surface contrast have made it harder for New Horizons to capture its surface features from afar, but the latest, closer images of Charon’s surface show intriguing fine details.

charon_150709[1]

Charon, Up Close – July 9, 2015: Image of Charon from the New Horizons’ Long Range Reconnaissance Imager (LORRI), July 8, 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Newly revealed are brighter areas on Charon that members of the mission’s Geology, Geophysics and Imaging team (GGI) suspect might be impact craters. If so, the scientists would put them to good use. “If we see impact craters on Charon, it will help us see what’s hidden beneath the surface,” said GGI leader Jeff Moore of NASA’s Ames Research Center. “Large craters can excavate material from several miles down and reveal the composition of the interior.”

In short, said GGI deputy team leader John Spencer of SwRI, “Charon is now emerging as its own world. Its personality is beginning to really reveal itself.”

ESO: New galactic survey measuring dark matter distribution

Here’s the latest ESO (European Southern Observatory) report:

Huge New Survey to Shine Light on Dark Matter

The first results have been released from a major new dark matter survey of the southern skies using ESO’s VLT Survey Telescope (VST) at the Paranal Observatory in Chile. The VST KiDS survey will allow astronomers to make precise measurements of dark matter, the structure of galaxy halos, and the evolution of galaxies and clusters. The first KiDS results show how the characteristics of the observed galaxies are determined by the invisible vast clumps of dark matter surrounding them.

The first results have been released from a major new dark matter survey of the southern skies using ESO’s VLT Survey Telescope (VST) at the Paranal Observatory in Chile. The project, known as the Kilo-Degree Survey (KiDS), uses imaging from the VST and its huge camera, OmegaCAM to analyse images of over two million galaxies. The KiDS team studied the distortion of light emitted from these galaxies, which bends as it passes massive clumps of dark matter during its journey to Earth. From the gravitational lensing effect, these groups turn out to contain around 30 times more dark than visible matter. Left, a group of galaxies mapped by KiDS. Right, the same area of sky, but with the invisible dark matter rendered in pink. Credit: Kilo-Degree Survey Collaboration/A. Tudorica & C. Heymans/ESO

Around 85% of the matter in the Universe is dark [1], and of a type not understood by physicists. Although it doesn’t shine or absorb light, astronomers can detect this dark matter through its effect on stars and galaxies, specifically from its gravitational pull. A major project using ESO’s powerful survey telescopes is now showing more clearly than ever before the relationships between this mysterious dark matter and the shining galaxies that we can observe directly [2].

The project, known as the Kilo-Degree Survey (KiDS), uses imaging from the VLT Survey Telescope and its huge camera, OmegaCAM. Sited at ESO’s Paranal Observatory in Chile, this telescope is dedicated to surveying the night sky in visible light — and it is complemented by the infrared survey telescope VISTA. One of the major goals of the VST is to map out dark matter and to use these maps to understand the mysterious dark energy that is causing our Universe’s expansion to accelerate.

The best way to work out where the dark matter lies is through gravitational lensing — the distortion of the Universe’s fabric by gravity, which deflects the light coming from distant galaxies far beyond the dark matter. By studying this effect it is possible to map out the places where gravity is strongest, and hence where the matter, including dark matter, resides.

As part of the first cache of papers, the international KiDS team of researchers, led by Koen Kuijken at the Leiden Observatory in the Netherlands [3], has used this approach to analyse images of over two million galaxies, typically 5.5 billion light-years away [4]. They studied the distortion of light emitted from these galaxies, which bends as it passes massive clumps of dark matter during its journey to Earth.

The first results come from only 7% of the final survey area and concentrate on mapping the distribution of dark matter in groups of galaxies. Most galaxies live in groups — including our own Milky Way, which is part of the Local Group — and understanding how much dark matter they contain is a key test of the whole theory of how galaxies form in the cosmic web. From the gravitational lensing effect, these groups turn out to contain around 30 times more dark than visible matter.

Interestingly, the brightest galaxy nearly always sits in the middle of the dark matter clump,” says Massimo Viola (Leiden Observatory, the Netherlands) lead author of one of the first KiDS papers.

This prediction of galaxy formation theory, in which galaxies continue to be sucked into groups and pile up in the centre, has never been demonstrated so clearly before by observations,” adds Koen Kuijken.

The findings are just the start of a major programme to exploit the immense datasets coming from the survey telescopes and the data are now being made available to scientists worldwide through the ESO archive.

The KiDS survey will help to further expand our understanding of dark matter. Being able to explain dark matter and its effects would represent a major breakthrough in physics.

 

New Horizons: July 8th daily briefing video + Flyby schedule + Pluto in Google Earth

Here’s the latest update on the New Horizons mission:

Here are timelines of events from now till July 14th when the New Horizons probe passes by Pluto and several days after:

Add Pluto to your Google Earth program: