Category Archives: Space Science

Mars rover Opportunity wrapping up study of Marathon Valley

The Mars  rover Opportunity, in operation since January 2004, continues to explore and make new discoveries. Here is its latest report:

Rover Opportunity Wrapping up Study of Martian Valley

IDL TIFF file
Mars Rover Opportunity’s Panorama of ‘Marathon Valley’ “Marathon Valley” on Mars opens to a view across Endeavour Crater in this scene from the Pancam of NASA’s Mars rover Opportunity. The scene merges many exposures taken during April and May 2016. The view spans from north (left) to west-southwest. Its foreground shows the valley’s fractured texture. Continue

“Marathon Valley,” slicing through a large crater’s rim on Mars, has provided fruitful research targets for NASA’s Opportunity rover since July 2015, but the rover may soon move on.

Opportunity recently collected a sweeping panorama from near the western end of this east-west valley. The vista shows an area where the mission investigated evidence about how water altered the ancient rocks and, beyond that, the wide floor of Endeavour Crater and the crater’s eastern rim about 14 miles (22 kilometers) away.

Marathon Valley lured the mission because researchers using NASA’s Mars Reconnaissance Orbiter had mapped water-related clay minerals at this area of the western rim of Endeavour Crater. The rover team chose the valley’s informal name because Opportunity’s arrival at this part of the rim coincided closely with the rover surpassing marathon-footrace distance in total driving since its January 2004 Mars landing.

“We are wrapping up our last few activities in Marathon Valley and before long we’ll drive away, exiting along the southern wall of the valley and heading southeast,” said Opportunity Principal Investigator Steve Squyres, of Cornell University, Ithaca, New York.

As Opportunity examined the clay-bearing rocks on the valley floor that were detected from orbit, the rover’s own observations of the valley’s southern flank revealed streaks of red-toned, crumbly material. The science team chose to investigate this apparently weathered material. The rover approached exposures of it to prepare for using the Rock Abrasion Tool, called the RAT. This tool grinds away a rock’s surface to expose the interior for inspection.

“What we usually do to investigate material that’s captured our interest is find a bedrock exposure of it and use the RAT,” Squyres said. “What we didn’t realize until we took a close-enough look is that this stuff has been so pervasively altered, it’s not bedrock. There’s no solid bedrock you could grind with the RAT.”

Instead, the rover exposed some fresh surfaces for inspection by scuffing some of the reddish material with a wheel.

Squyres said,

“In the scuff, we found one of the highest sulfur contents that’s been seen anywhere on Mars. There’s strong evidence that, among other things, these altered zones have a lot of magnesium sulfate. We don’t think these altered zones are where the clay is, but magnesium sulfate is something you would expect to find precipitating from water.

“Fractures running through the bedrock, forming conduits through which water could flow and transport soluble materials, could alter the rock and create the pattern of red zones that we see.”

As of June 14, Opportunity has driven 26.59 miles (42.79 kilometers). NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, built the rover and manages the mission for NASA’s Science Mission Directorate, Washington. For more information about Opportunity, visit:

===

You can find maps of where Opportunity has traveled at Mars Exploration Rover Mission: Opportunity Traverse Map Archive. This map shows its recent path as of June 17, 2016:

Map-2016-06-17

Video: Planetary Post with Robert Picardo reports on a “HUGE Space Telescope”

Here is the latest episode of The Planetary Society‘s Planetary Post with Robert Picardo:

This month, Robert Picardo and Bill Nye took a trip to the Goddard Space Flight Center to see the James Webb Space Telescope being built in the clean room. This is the 5th installment of The Planetary Post, our monthly newsletter from Robert Picardo featuring the most notable space happenings. To sign up go to http://www.planetary.org/connect

 

New Horizon: ‘Halo’ craters on Pluto covered in methane and water ices

Newly released images from the New Horizon fly-by of Pluto last summer:

Pluto’s ‘Halo’ Craters

Within Pluto’s informally named Vega Terra region is a field of eye-catching craters that looks like a cluster of bright halos scattered across a dark landscape.

Halo_context-scale_20160421[1]Larger image

The region is far west of the hemisphere NASA’s New Horizons spacecraft viewed during close approach last summer. The upper image – in black and white – sports several dozen “haloed” craters. The largest crater, at bottom-right, measures about 30 miles (50 kilometers) across. The craters’ bright walls and rims stand out from their dark floors and surrounding terrain, creating the “halo” effect.

In the lower image, composition data from New Horizons’ Ralph/Linear Etalon Imaging Spectral Array (LEISA) indicate a connection between the bright halos and distribution of methane ice, shown in false color as purple. The floors and terrain between craters show signs of water ice, colored in blue. Exactly why the bright methane ice settles on these crater rims and walls is a mystery; also puzzling is why this same effect doesn’t occur broadly across Pluto.

The upper view is a mosaic made from two separate images obtained by New Horizons’ Long Range Reconnaissance Imager (LORRI). A high-resolution strip taken at approximately 760 feet (232 meters) per pixel is overlain on a broader, low-resolution image taken at 2,910 feet (889 meters) per pixel.  The images were obtained at ranges of 28,800 miles (46,400 kilometers) and 106,700 miles (171,700 kilometers) from Pluto, respectively, on July 14, 2015. The LEISA data came the same day, during the instrument’s highest-resolution scan of Pluto, with New Horizons 28,000 miles (45,500 kilometers) from Pluto, with a resolution of 1.7 miles (2.7 kilometers) per pixel.

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Dawn sends new hi-def images of Ceres

New images of the dwarf planet Ceres in the asteroid belt from the Dawn probe:

New Ceres Images Show Bright Craters

Craters with bright material on dwarf planet Ceres shine in new images from NASA’s Dawn mission.

pia20358_main[1]
Ceres’ Haulani Crater, with a diameter of 21 miles (34 kilometers), shows evidence of landslides from its crater rim. Smooth material and a central ridge stand out on its floor. This image was made using data from NASA’s Dawn spacecraft when it was in its high-altitude mapping orbit, at a distance of 915 miles (1,470 kilometers) from Ceres. This enhanced color view allows scientists to gain insight into materials and how they relate to surface morphology. Rays of bluish ejected material are prominent in this image. The color blue in such views has been associated with young features on Ceres. [Larger image]
In its lowest-altitude mapping orbit, at a distance of 240 miles (385 kilometers) from Ceres, Dawn has provided scientists with spectacular views of the dwarf planet.

Haulani Crater, with a diameter of 21 miles (34 kilometers), shows evidence of landslides from its crater rim. Smooth material and a central ridge stand out on its floor. An enhanced false-color view allows scientists to gain insight into materials and how they relate to surface morphology. This image shows rays of bluish ejected material. The color blue in such views has been associated with young features on Ceres.

pia20359_crop[1]
This image is from a mosaic of views that NASA’s Dawn spacecraft took in its low-altitude mapping orbit, at a distance of 240 miles (385 kilometers) from the surface of Ceres. In the center is Haulani Crater, which has a diameter of 21 miles (34 kilometers).
“Haulani perfectly displays the properties we would expect from a fresh impact into the surface of Ceres. The crater floor is largely free of impacts, and it contrasts sharply in color from older parts of the surface,” said Martin Hoffmann, co-investigator on the Dawn framing camera team, based at the Max Planck Institute for Solar System Research, Göttingen, Germany.

The crater’s polygonal nature (meaning it resembles a shape made of straight lines) is noteworthy because most craters seen on other planetary bodies, including Earth, are nearly circular. The straight edges of some Cerean craters, including Haulani, result from pre-existing stress patterns and faults beneath the surface.

A hidden treasure on Ceres is the 6-mile-wide (10-kilometer-wide) Oxo Crater, which is the second-brightest feature on Ceres (only Occator’s central area is brighter). Oxo lies near the 0 degree meridian that defines the edge of many Ceres maps, making this small feature easy to overlook. Oxo is also unique because of the relatively large “slump” in its crater rim, where a mass of material has dropped below the surface. Dawn science team members are also examining the signatures of minerals on the crater floor, which appear different than elsewhere on Ceres.

pia20360[1]
The 6-mile-wide (10-kilometer-wide) crater named Oxo Crater is the second-brightest feature on Ceres. Only Occator’s central area is brighter. Oxo lies near the 0 degree meridian that defines the edge of many Ceres maps, making this small feature easy to overlook. NASA Dawn spacecraft took this image in its low-altitude mapping orbit, at a distance of 240 miles (385 kilometers) from the surface of Ceres. Oxo is also unique because of the relatively large “slump” in its crater rim, where a mass of material has dropped below the surface. Dawn science team members are also examining the signatures of minerals on the crater floor, which appear different than elsewhere on Ceres. The image has been rotated so that north on Ceres is up. [Larger image]
“Little Oxo may be poised to make a big contribution to understanding the upper crust of Ceres,” said Chris Russell, principal investigator of the mission, based at the University of California, Los Angeles.

Dawn’s mission is managed by JPL for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit: dawn.jpl.nasa.gov/mission.

Opportunity rover spots a dust devil scooting by

Dust devils have been images several times by Mars rovers over the years but this one is particularly clear and close:

Opportunity’s Devilish View from on High

PIA20012-16[1]

From its perch high on a ridge, NASA’s Mars Exploration Rover Opportunity recorded this image of a Martian dust devil twisting through the valley below. The view looks back at the rover’s tracks leading up the north-facing slope of “Knudsen Ridge,” which forms part of the southern edge of “Marathon Valley.”

Opportunity took the image using its navigation camera (Navcam) on March 31, 2016, during the 4,332nd Martian day, or sol, of the rover’s work on Mars.

Dust devils were a common sight for Opportunity’s twin rover, Spirit, in its outpost at Gusev Crater. Dust devils have been an uncommon sight for Opportunity, though.

Just as on Earth, a dust devil is created by a rising, rotating column of hot air. When the column whirls fast enough, it picks up tiny grains of dust from the ground, making the vortex visible.

During the uphill drive to reach the top of Knudsen Ridge, Opportunity’s tilt reached 32 degrees, the steepest ever for any rover on Mars.

NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover Project for NASA’s Science Mission Directorate, Washington.

More information about Opportunity is at these sites: