Space transport roundup – Nov.16.2019

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** SpaceX executes successful static firing of Crew Dragon launch escape system.  A similar firing last April led to an explosion caused by leaks and other problems in the propellant plumbing. Assuming the data looks OK in closer examination, this firing allows for SpaceX to proceed to the in-flight abort test flight, presumably in December, in which a Crew Dragon will detach from a Falcon 9 upper stage not long after launch to simulate the escape from a failing booster.

See also

More SpaceX entries below.

** China launches two rockets on same day – Sept.13th: China carries out 2 orbital launches inside 3 hours – SpaceNews.com.

Firstly, a Kuaizhou-1A (Y11) launcher sent a remote sensing satellite into low earth orbit from the Jiuquan Satellite Launch Center, Gansu Province in northwest China, on 13 November 2019:

The Jilin-1 satellite constellation was developed on China’s Jilin Province and is the country’s first self-developed remote sensing satellite for commercial use. Data will be provided to commercial clients to help them forecast and mitigate geological disasters, as well as shorten the time scale for the exploration of natural resources.

The satellites were developed by the Chang Guang Satellite Technology Co., Ltd under the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

And then a Long March-6 sent five  small remote-sensing satellites into orbit from Taiyuan Satellite Launch Center in north China’s Shanxi Province:

The new satellites – also designated Zhongzi, were developed by the DFH Satellite Co., Ltd. and the Shanghai Academy of Spaceflight Technology (SAST) – are part of a commercial satellite project financed by the Ningxia Jingui Information Technology Co., Ltd. and will be mainly used for remote sensing detection.

This mission was the first low-inclination orbital launch for the Long March-6 launch vehicles, in response to the mission needs. The rocket was submitted to a series of technical upgrades, including take-off roll, horizontal guidance, new composite material double-walled mount barrel and others.

** UK govt. aims to develop plan for flight-testing Reaction Engines‘ SABRE engine:

The purpose of this call is to produce a roadmap for the next phase in the SABRE development. It is focused on flight-testing the core SABRE air-breathing engine and assessing the potential competitive positioning of future SABRE-powered applications in the future space transportation segment.

** US rocket company Launcher gets $1.5 million for rocket engine development:

From launcher:

Launcher Inc. has scheduled the first full-scale test of its E-2 rocket engine for mid-2020 after securing a $1.5M award from the U.S. Air Force and taking delivery of the world’s largest 3D printed combustion chamber. 

3D printed by AMCM (An EOS Group Company) in Copper Alloy on AMCM’s M4K machine, it is the world’s largest liquid rocket engine combustion chamber 3D printed in a single part. The combustion chamber is 34in (86cm) tall with an exit nozzle diameter of 16in (41cm).

Launcher E-2 engine employs a large 3-D printed combustion chamber.

** EXOS Aerospace says structural failure led to the in-flight abort and loss of the SARGE vehicle  on the recent launch at Spaceport America in October : Exos blames suborbital launch accident on structural failure – SpaceNews.com

In a statement released by the Texas-based company Nov. 14, Exos said its Suborbital Autonomous Rocket with GuidancE, or SARGE, rocket was lost 48 seconds after its Oct. 26 liftoff from Spaceport America in New Mexico.

“We are still in the process of evaluating video and telemetry data; however, it appears a structural failure resulted in an abort and deployment of the recovery system at speeds far beyond its design capability,” the company stated.

** Airbus team flies TEXUS suborbital rocket from Esrange launch facility near Kiruna in northern Sweden:

Airbus has completed another successful space mission. On 15 November, the TEXUS-56 rocket completed a scientific research flight.

The research rocket took off at 10:35 CET from Kiruna, north Sweden, and gave the scientists involved six minutes of research in microgravity.  After the parachute landing of the rocket, the experiments were recovered by a helicopter team. The research teams will now evaluate the results.

“Mission accomplished! Our TEXUS team from Bremen has once again done a great job for our customers, ESA and DLR,” enthuses project manager Detlef Wilde. “With TEXUS, we offer very short preparation times, integrate the payloads and take care of the complete mission execution, including procurement of the rockets – a service that our customers love to use”.

Launch of the Airbus suborbital TEXUS-56 mission from Esrange Space Center in northern Sweden.

** SpaceX:

*** Falcon 9 first stage returns to port following landing at sea for the Starlink launch:

Incredible how well the first-ever four-time flown booster looks. Was sort of bad weather, the B1048.4 traveled thru 15ft seas.

*** Update on the first group of fully operational Starlink satellites to reach orbit: SpaceX says upgraded Starlink satellites have better bandwidth, beams, and more – Teslarati

Aside from a general improvement to the overall visual fit-and-finish of the v1.0 spacecraft, SpaceX’s official comments on the matter indicated that the most substantial changes between v0.9 and v1.0 were more related to each spacecraft’s advanced electronics and payloads. In the case of Starlink, each satellite’s primary payload is a high-performance suite of electronically-steered phased array antennas. Initially developed to improve the flexibility of tracking and scanning radars used by military fighter aircraft, phased array antennas (and radar) allow multiple beams to be aimed without physically moving the antenna.

SpaceX says that Starlink v1.0 satellites added a number of Ka-band antennas alongside upgraded Ku-band hardware similar to what was installed on Starlink v0.9. Ka and Ku refer to similar but different communications frequencies, with Ku-band generally offering greater reliability and cloud/rain tolerance, while Ka-band is a bit more sensitive to environmental factors but offers a substantially higher theoretical bandwidth.

*** SpaceX aims to launch the Kacific-1 comm-sat to orbit in DecemberSpaceX’s next Falcon 9 satellite launch a step closer as spacecraft heads to Florida – Teslarati

Known as Kacific-1 or JCSat-18 the massive spacecraft is scheduled to launch no earlier than mid-December and is current set to be SpaceX’s second to last or final launch of 2019. According to tweets published by operator Kacific and satellite manufacturer Boeing, the satellite departed Boeing’s El Segundo, California factory on November 4th and has probably already arrived in Cape Canaveral, Florida.

After arrival, Boeing technicians will inspect the satellite to ensure its road trip caused no damaged and fuel the spacecraft’s bipropellant and xenon propellant tanks. SpaceX technicians will then take over, encapsulating Kacific-1 inside a Falcon 9 payload fairing, transporting the assembly to its Launch Complex 40 pad, and attaching the fairing to an integrated Falcon 9 rocket.

*** Views of Starship Mk.1 construction activity at Boca Chica Beach, Texas:

Starship Mk1 is now preparing for cryo loading tests in the coming days, which will mark fuel tests ahead of the testing with her three Raptor engines.

*** Latest fly-around the Florida orbital Starship demo construction facility:

Aerial view of Cocoa Facility. Attachment points in the top of the engine section are close to completion so that the top dome can be installed. Three very large containers have arrived at the site who’s purpose is unknown. They are located in various locations. One out front of main facility, one on the side of the facility and one in the small tent on the side of the facility.

== Amazon Ad ==

See You In Orbit?: Our Dream Of Spaceflight

Videos: “Space to Ground” report – Nov.15.2019

Here is the latest episode in NASA’s Space to Ground weekly report on activities related to the International Space Station:

** Expedition 61 AMS Overview Briefing – November 12, 2019

At the Johnson Space Center, space station operations integration manager Kenny Todd and Alpha Magnetic Spectrometer (AMS) project manager Ken Bollweg discuss the activities aboard the International Space Station and the science of the AMS in a briefing on Nov. 12 ahead of a series of spacewalks to repair the particle physics experiment on the outside of the space station. NASA astronaut Andrew Morgan and ESA (European Space Agency) astronaut Luca Parmitano are to conduct all of the complicated spacewalks that are set to begin November 15th.

** Expedition 61 AMS Spacewalk Briefing – November 12, 2019

At the Johnson Space Center, Alpha Magnetic Spectrometer (AMS) spacewalk repair project manager Tara Jochim, spacewalk flight director Jeff Radigan, and lead spacewalk officer John Mularski discuss the preparations and procedures behind a series of spacewalks to repair the particle physics experiment on the outside of the space station during a briefing on Nov. 12. NASA astronaut Andrew Morgan and ESA (European Space Agency) astronaut Luca Parmitano are to conduct all of the complicated spacewalks that are set to begin November 15th.

** Suiting Up for a Spacewalk

On Friday International Space Station commander Luca Parmitano of ESA (European Space Agency) and NASA’s Andrew Morgan start a series of spacewalks to upgrade the cooling system on the Alpha Magnetic Spectrometer. Each of those spacewalk days will start with the lengthy process of getting into the spacesuits that support them as they float in the vacuum of space. Want to see what that looks like? Here’s an accelerated view of the process, taken from an October 2019 spacewalk in which Parmitano helped Morgan and astronaut Christina Koch get ready for their spacewalk.

** Christina Koch and Jessica Meir in-flight interviews from ISS

ISS Expedition 61 In-Flight Interviews with the Kelly Clarkson Show and Elle Magazine’s Digital News Platform with NASA Flight Engineers Christina Koch and Jessica Meir.

** Alpha Magnetic Spectrometer Repair Spacewalk #1, Nov. 15, 2019 – Video of Friday’s spacewalk:

Astronauts Andrew Morgan of NASA and Luca Parmitano of the European Space Agency (ESA) will venture outside the International Space Station starting at ~7:05 a.m. EST to begin repairing the Alpha Magnetic Spectrometer (AMS) instrument. This is the first in a series of repair spacewalks – the most complex of this kind since the servicing of the Hubble Space Telescope. AMS is attached to the outside of the space station, where it has been operating since 2011. It is a particle physics experiment working to help us understand dark matter and the origins of the universe.

== Amazon Ad ==

Outpost in Orbit:
A Pictorial & Verbal History of the Space Station

The

Space policy roundup – Nov.15.2019

A sampling of links to recent space policy, politics, and government (US and international) related space news and resource items that I found of interest (find previous space policy roundups here):

Webcasts:

** The Space Show – Sun, 11/10/2019Dr. Christopher Morrison and Dr. Marcelo Vazquez discussed “space radiation & human spaceflight, medical radiation experiments for human spaceflight, alternative experiment ideas for better data collection”.

** The Space Show – Tue, 11/12/2019Jonathan Goff talked about Altius Space Machines and its acquisition of ASM by Voyager Space Holdings plus “future plans, LEO satellite service, debris removal and more”.

** November 13, 2019 Zimmerman/Batchelor podcast | Behind The Black

==

== Amazon Ad ==

Archaeology from Space:
How the Future Shapes Our Past

Space settlement roundup – Nov.14.2019

A sampling of recent articles, videos, and images related to human expansion into the solar system (see also previous space settlement postings):

** A settlement on Mars has always been the primary goal for SpaceX. The accelerating development of the Starship space transport system means that such a settlement is becoming more feasible and nearer in time. In fact, if the Starship space transport system achieves Elon Musk’s expectation of a $10-20/kg operating cost to reach low earth orbit, then all sorts of  space concepts previously considered distant future sci-fi become feasible.

A SpaceX vision of a Mars settlement built by people transported there by Starships.

Elon recently posted at on Twitter a series of comments about Starship capabilities and how it would enable Mars settlement:

  • In response to a remark about $20/kg flight costs with the Starship, Elon said,  “The economics have to be something like that to build a self-sustaining city on Mars
  • A thousand ships will be needed to create a sustainable Mars city
  • Payload to orbit per year of Starship fleet is most mind-blowing metric, as it’s designed to fly 3X per day, which is ~1000X per year
  • If we build as many Starships as Falcons, so ~100 vehicles & each does 100 tons to orbit, that’s a capacity of 10 million tons of payload to orbit per year
  • Current global payload to orbit capacity is about 500 tons per year, of which Falcon is about half
  • So it will take about 20 years to transfer a million tons to Mars Base Alpha, which is hopefully enough to make it sustainable
  • In response to a comment about whether the Starship  is needed so one can “escape if the earth is getting close to its end”, Elon said, “No, in the beginning, assuming you even make it there alive, Mars will be far more dangerous & difficult than Earth & take decades of hard labor to make self-sufficient. That’s the sales pitch. Want to go?”
  • And in response to the comment, “It’s not about escaping, it’s about survival of the species if one planet is wiped out”, Elon said, “Exactly! It’s also a far more exciting & inspiring future if consciousness is out there among the stars, than forever confined to Earth until some eventual extinction event, however far in the future that may be (hopefully, very far)

** SpaceX appears especially interested in the Arcadia Planitia region as a potential site for a space settlement: SpaceX completes 1st round of Starship’s Mars landing site images | Behind The Black

Based on all this research and the image locations being chosen by SpaceX, we therefore might someday hear a pilot of Starship take a breath and then announce to the world, “Arcadia Base here, the Starship has landed.”

Arcadia Planitia shown in top left of map made by the Mars Orbiter Laser Altimeter on NASA’s Mars Global Surveyor. Image via Wikipedia.

** Providing spin gravity with Starships on the way to Mars.

See the video caption for more details, discussion, and corrections.

** There were several presentations of in-space habitat designs at the recent SSI 50: The Space Settlement Enterprise conference in Seattle. Most  of the panel presentations are available via the SSI 50 Space Settlement conference videos.

Here are David Livingston’s subsequent  interviews with three of those habitat designers:

**** The Space Show – Mon, 10/28/2019 –  Anthony Longman discussed “his expandable rotating shielded space habitats”.

Longman works at Sky Frame Research, which collaborates with Prof. Robert Skelton at Texas A&M Aerospace Engineering Dept. They have used two NASA NIAC grants (Tensegrity Approaches to In-Space Construction | NASA) to pursue a habitat design that can start small and then grow over time: Building A Habitat For Sustainable Life In Space – Texas A&M Today

Model of the space habitat designed by Robert Skelton and partners. The design allows for the habitat to start small and grow. Image credits: Justin Baetge/Texas A&M Engineering.

He proposes to start the habitat at the size of 20 meters radius, enough to sustain about 20 people, with the final structure being built over time out to 225 meters, housing 8,000 people with 300 square meters of agricultural space per person.

The initial habitat would be small and built from materials launched from Earth. Because material resources are costly in space, Skelton suggests using tensegrity systems for the design of the growth adaptable space structure. These minimal mass structures make the habitat easy to change in shape, and it’s very strong and lightweight. Subsequent growth stages of the habitat would rely on tensegrity robots mining materials from the moon and asteroids.

With the overall shape of the habitat designed in concentric cylinders, the outer shell would be a thick-wall of regolith for radiation protection that would rotate slowly to enhance stability. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock found on Earth, the moon and asteroids. The habitat inside would spin at a faster rate to provide artificial gravity (due to the centrifugal forces) for the inhabitants inside. The habitat would provide all levels of gravity from 0 G to 1 G where the lower g-level space is reserved for agriculture and the people occupy higher g-levels up to 1 G.

**** The Space Show – Thu, 10/24/2019Suzana Bianco discussed “Space architecture and her concept designs for free space habitats and stations”. See the slides from her SSI conference presentation: New Venice – set 2019 (pdf).

“New Venice” space habitat designed by Suzana Bianco. Presented at Space Studies Conference 2019. (Slides pdf)

See also this essay by Bianco: How I designed a space outpost – Space Decentral – Medium.

**** The Space Show – Mon, 10/07/2019John Blincow gave a “complete and thorough introduction to The Gateway Foundation Project including the Von Braun station, space hotels, commercial operations, orbital manufacturing and assembly and more”.

The Gateway Foundation’s Youtube channel also has several videos describing the Von Braun station. For example,

** Bigelow Aerospace opened up B330 and B2100 expandable habitat prototypes to the press on Sept.12th:

** Improved spacesuits are needed are needed for modern space endeavors. ILC Dover, which designed and built Apollo spacesuits, has developed a line of Commercial Spacesuits that includes the “Astro™, the EVA (Extravehicular Activity) spacesuit, and Sol™, the LEA (Launch, Entry and Abort) spacesuit”.

ILC Dover introduces the Sol™ LEA (Launch, Entry and Abort) suit shown on the left and the Astro™ EVA suit on the right with life support module designed by Collins Aerospace.

Both Astro™ EVA and Sol™ LEA will be vital in moving forward with commercial space travel. Combining astronaut needs with an emphasis on safety, ILC Dover has created the next generation spacesuits.

Astro™ EVA and Sol™ LEA spacesuits are designed with an astronaut’s mission in mind. Astro™ EVA is equipped with the newly patented Hybrid Upper Torso to accommodate all astronauts. The Hybrid Upper Torso can be resized without tools, thereby minimizing EVA spacesuit inventory. In addition, the engineers placed the mobility joints where it matters, optimizing mobility without compromising weight. Sol™ LEA is a lightweight highly mobile all soft spacesuit providing astronauts a comfortable safe ride to and from space.

** NASA recently debuted suits in development for the Artemis lunar missions: A New Spacesuit for Artemis Generation Astronauts | NASA

== Amazon Ad ==

The High Frontier: An Easier Way

Carnival of Space #635-637 – Urban Astronomer & Universe Today

The combo Carnival of Space #635-636 is hosted by Urban Astronomer.

Slope Map of the Moon’s South Pole (85°S to Pole). Credits: Lunar and Planetary Institute via Carnival of Space #635-636.

And the Carnival of Space #637 is hosted by Universe Today.

== Amazon Ad ==

The Race to the Moon Chronicled in Stamps, Postcards, and Postmarks:
A Story of Puffery vs. the Pragmatic (Springer Praxis Books)

Everyone can participate in space