Space policy roundup – Nov.15.2019

A sampling of links to recent space policy, politics, and government (US and international) related space news and resource items that I found of interest (find previous space policy roundups here):


** The Space Show – Sun, 11/10/2019Dr. Christopher Morrison and Dr. Marcelo Vazquez discussed “space radiation & human spaceflight, medical radiation experiments for human spaceflight, alternative experiment ideas for better data collection”.

** The Space Show – Tue, 11/12/2019Jonathan Goff talked about Altius Space Machines and its acquisition of ASM by Voyager Space Holdings plus “future plans, LEO satellite service, debris removal and more”.

** November 13, 2019 Zimmerman/Batchelor podcast | Behind The Black


== Amazon Ad ==

Archaeology from Space:
How the Future Shapes Our Past

Space settlement roundup – Nov.14.2019

A sampling of recent articles, videos, and images related to human expansion into the solar system (see also previous space settlement postings):

** A settlement on Mars has always been the primary goal for SpaceX. The accelerating development of the Starship space transport system means that such a settlement is becoming more feasible and nearer in time. In fact, if the Starship space transport system achieves Elon Musk’s expectation of a $10-20/kg operating cost to reach low earth orbit, then all sorts of  space concepts previously considered distant future sci-fi become feasible.

A SpaceX vision of a Mars settlement built by people transported there by Starships.

Elon recently posted at on Twitter a series of comments about Starship capabilities and how it would enable Mars settlement:

  • In response to a remark about $20/kg flight costs with the Starship, Elon said,  “The economics have to be something like that to build a self-sustaining city on Mars
  • A thousand ships will be needed to create a sustainable Mars city
  • Payload to orbit per year of Starship fleet is most mind-blowing metric, as it’s designed to fly 3X per day, which is ~1000X per year
  • If we build as many Starships as Falcons, so ~100 vehicles & each does 100 tons to orbit, that’s a capacity of 10 million tons of payload to orbit per year
  • Current global payload to orbit capacity is about 500 tons per year, of which Falcon is about half
  • So it will take about 20 years to transfer a million tons to Mars Base Alpha, which is hopefully enough to make it sustainable
  • In response to a comment about whether the Starship  is needed so one can “escape if the earth is getting close to its end”, Elon said, “No, in the beginning, assuming you even make it there alive, Mars will be far more dangerous & difficult than Earth & take decades of hard labor to make self-sufficient. That’s the sales pitch. Want to go?”
  • And in response to the comment, “It’s not about escaping, it’s about survival of the species if one planet is wiped out”, Elon said, “Exactly! It’s also a far more exciting & inspiring future if consciousness is out there among the stars, than forever confined to Earth until some eventual extinction event, however far in the future that may be (hopefully, very far)

** SpaceX appears especially interested in the Arcadia Planitia region as a potential site for a space settlement: SpaceX completes 1st round of Starship’s Mars landing site images | Behind The Black

Based on all this research and the image locations being chosen by SpaceX, we therefore might someday hear a pilot of Starship take a breath and then announce to the world, “Arcadia Base here, the Starship has landed.”

Arcadia Planitia shown in top left of map made by the Mars Orbiter Laser Altimeter on NASA’s Mars Global Surveyor. Image via Wikipedia.

** Providing spin gravity with Starships on the way to Mars.

See the video caption for more details, discussion, and corrections.

** There were several presentations of in-space habitat designs at the recent SSI 50: The Space Settlement Enterprise conference in Seattle. Most  of the panel presentations are available via the SSI 50 Space Settlement conference videos.

Here are David Livingston’s subsequent  interviews with three of those habitat designers:

**** The Space Show – Mon, 10/28/2019 –  Anthony Longman discussed “his expandable rotating shielded space habitats”.

Longman works at Sky Frame Research, which collaborates with Prof. Robert Skelton at Texas A&M Aerospace Engineering Dept. They have used two NASA NIAC grants (Tensegrity Approaches to In-Space Construction | NASA) to pursue a habitat design that can start small and then grow over time: Building A Habitat For Sustainable Life In Space – Texas A&M Today

Model of the space habitat designed by Robert Skelton and partners. The design allows for the habitat to start small and grow. Image credits: Justin Baetge/Texas A&M Engineering.

He proposes to start the habitat at the size of 20 meters radius, enough to sustain about 20 people, with the final structure being built over time out to 225 meters, housing 8,000 people with 300 square meters of agricultural space per person.

The initial habitat would be small and built from materials launched from Earth. Because material resources are costly in space, Skelton suggests using tensegrity systems for the design of the growth adaptable space structure. These minimal mass structures make the habitat easy to change in shape, and it’s very strong and lightweight. Subsequent growth stages of the habitat would rely on tensegrity robots mining materials from the moon and asteroids.

With the overall shape of the habitat designed in concentric cylinders, the outer shell would be a thick-wall of regolith for radiation protection that would rotate slowly to enhance stability. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock found on Earth, the moon and asteroids. The habitat inside would spin at a faster rate to provide artificial gravity (due to the centrifugal forces) for the inhabitants inside. The habitat would provide all levels of gravity from 0 G to 1 G where the lower g-level space is reserved for agriculture and the people occupy higher g-levels up to 1 G.

**** The Space Show – Thu, 10/24/2019Suzana Bianco discussed “Space architecture and her concept designs for free space habitats and stations”. See the slides from her SSI conference presentation: New Venice – set 2019 (pdf).

“New Venice” space habitat designed by Suzana Bianco. Presented at Space Studies Conference 2019. (Slides pdf)

See also this essay by Bianco: How I designed a space outpost – Space Decentral – Medium.

**** The Space Show – Mon, 10/07/2019John Blincow gave a “complete and thorough introduction to The Gateway Foundation Project including the Von Braun station, space hotels, commercial operations, orbital manufacturing and assembly and more”.

The Gateway Foundation’s Youtube channel also has several videos describing the Von Braun station. For example,

** Bigelow Aerospace opened up B330 and B2100 expandable habitat prototypes to the press on Sept.12th:

** Improved spacesuits are needed are needed for modern space endeavors. ILC Dover, which designed and built Apollo spacesuits, has developed a line of Commercial Spacesuits that includes the “Astro™, the EVA (Extravehicular Activity) spacesuit, and Sol™, the LEA (Launch, Entry and Abort) spacesuit”.

ILC Dover introduces the Sol™ LEA (Launch, Entry and Abort) suit shown on the left and the Astro™ EVA suit on the right with life support module designed by Collins Aerospace.

Both Astro™ EVA and Sol™ LEA will be vital in moving forward with commercial space travel. Combining astronaut needs with an emphasis on safety, ILC Dover has created the next generation spacesuits.

Astro™ EVA and Sol™ LEA spacesuits are designed with an astronaut’s mission in mind. Astro™ EVA is equipped with the newly patented Hybrid Upper Torso to accommodate all astronauts. The Hybrid Upper Torso can be resized without tools, thereby minimizing EVA spacesuit inventory. In addition, the engineers placed the mobility joints where it matters, optimizing mobility without compromising weight. Sol™ LEA is a lightweight highly mobile all soft spacesuit providing astronauts a comfortable safe ride to and from space.

** NASA recently debuted suits in development for the Artemis lunar missions: A New Spacesuit for Artemis Generation Astronauts | NASA

== Amazon Ad ==

The High Frontier: An Easier Way

Carnival of Space #635-637 – Urban Astronomer & Universe Today

The combo Carnival of Space #635-636 is hosted by Urban Astronomer.

Slope Map of the Moon’s South Pole (85°S to Pole). Credits: Lunar and Planetary Institute via Carnival of Space #635-636.

And the Carnival of Space #637 is hosted by Universe Today.

== Amazon Ad ==

The Race to the Moon Chronicled in Stamps, Postcards, and Postmarks:
A Story of Puffery vs. the Pragmatic (Springer Praxis Books)

Student and amateur CubeSat news roundup – Nov.12.2019

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** The Phoenix CubeSat built by Arizona State Univ. students successfully reached the ISS via the recent launch of the Northrop Grumman Cygnus cargo spacecraft. It will be deployed into orbit in January: ASU Students Launch NASA-Funded CubeSat To Study Urban Heat Island – KJZZ

ASU Phoenix CubeSat team

Students from Arizona State University have launched a small, NASA-funded research satellite to study the urban heat island in seven U.S. cities, including Phoenix.

The Phoenix CubeSat is one of seven nanosatellites selected through NASA’s CubeSat Launch Initiative, which supports projects designed, built and operated by students, teachers and faculty, as well as NASA centers and nonprofit organizations.

An interdisciplinary group of around 100 ASU undergraduates took part in the effort, which will use an off-the-shelf thermal infrared camera to study changes in the heat properties of cities across the U.S. over time.

The term “urban heat island” describes an urban area that experiences warmer conditions than its surroundings due to human activities, the thermal properties of building materials and other related factors.

** Univ. Minnesota SOCRATES smallsat reaches the ISS on the same Cygnus.

The cube satellite, Signal Opportunity CubeSat Ranging and Timing Experiment System (SOCRATES), is the first small satellite created by the University sent into space by NASA. The satellite is equipped with high energy X-ray sensor detectors that can help with “deep space navigation” when GPS is not available. SOCRATES will also collect data related to electronic accelerations in sun flares to help research on solar anomalies.

The project is a collaboration between University faculty and students of different disciplines, like aerospace engineering, physics and astrophysics. SOCRATES is currently on the International Space Station and is expected to be released back into Earth’s orbit in January 2020.

See also

** India sponsoring competition for high school student CubeSat projects to fly on high altitude balloon:

The National Design and Research Forum (NDRF) has invited student teams from high schools across the country to take part in its National Space Challenge 2020 contest of flying small or cube satellites on a balloon.

Teams of five students from class 8 to class 12 can send in innovative proposals by November 25, the Bengaluru-based engineering research and development promotion body said in a release.

** EdgeCube built by students at Sonoma State, Santa Clara Univ., and Morerhead State to go to ISS on upcoming SpaceX Falcon 9 Cargo Dragon mission: Cube satellite built by SSU students set to orbit earth and collect data on vegetation health | SSU News

A student-built satellite about twice the size of a Rubik’s Cube has passed a series of tests to travel to space this December as part of a NASA-funded project involving three universities including Sonoma State. Built in partnership with Santa Clara University and Morehead State University in Kentucky, the “EdgeCube” satellite is scheduled to fly aboard a Space X Falcon 9 rocket on its way to the International Space Station. From there it will be boosted into orbit 500 kilometers above the Earth to collect data on vegetation health in ecosystems around the globe.

** “Are CubeSats the future of space exploration” – program about CubeSats.

This week Kevin DeBruin, Author of ‘To NASA and BEYOND: Perseverance to Achieve the Impossible [Amazon ad commission link]‘, talks about lessons from AeroCube-10, TeamXc at JPL and the use of CubeSats for outreach and education. Do you think CubeSats are the future of space exploration or are they better suited to education/student purposes?

**  TEPCE (Tether Electrodynamics Propulsion CubeSat Experiment) to test electrodynamic tether propulsion for CubeSats: A Space Tether May Solve Space Debris Problem | Asgardia – The Space Nation.

Built at the U.S. NRL (Navel Research Laboratory), the smallsat was launched on a SpaceX Falcon Heavy last June. The spacecraft is expected to soon separate into two parts connected by the 1 kilometer long tether.

Electrodynamic propulsion works on electromagnetic principles similar to an electric motor. The magnetic field in an electric motor attracts an electric current that flows through the windings of the armature causing the armature to spin. In space, the Earth has a naturally occurring magnetic field and for TEPCE, the tether wire serves the purpose of the armature. By inducing an electric current to flow along the tether, a mutual attraction between the Earth’s magnetic field and the tether will occur. This electromagnetic attraction can propel TEPCE to higher altitudes or to change the orientation of its orbit.

“U.S. Naval Research Laboratory’s Tether Electrodynamic Propulsion CubeSat Experiment‘s CubeSat split into two and connected by a tether.” Credits: Cameron Crippa/U.S. NRL.

More at

** HEPTA-Sat program teaches Smallsat engineering to students around the world:

HEPTA-Sat (Hands-on Education Program for Technical Advancement) is a hands-on study of small satellite design and engineering over several days of intensive practical lessons. HEPTA-Sat hand-on course puts it focus on establishing the knowledge of system engineering by going through the whole process of system integration. During the course student will learn how the system is broken down into different subsystem (requirement), how to integrate those different subsystem (requirement) into a fully functioning system, and how to test/debug it once it has been integrated. HEPTA-Sat teaching methods are designed to be implemented in existing universities anywhere. The program is supported by a vibrant instructor community and is open to people of any educational or professional background.

** AMSAT news on student and amateur CubeSat/smallsat projects: ANS-314 AMSAT News Service Special Bulletin

  • HuskySat Paving the Way for Cooperation
  • WRC-19 Debates Satellite Allocations
  • Electron Booster on the Pad for Rocket Lab’s 10th Mission
  • 2020 Cubesat Developers Workshop Call for Papers
  • Second Batch of 50th Anniversary “Friends of 50” Certificates Sent
  • AMSAT Seeks Digital Communications Team Members
  • NO-83 (BRICSAT-P) Nears Re-Entry
  • Upcoming ARISS Contact Schedule
  • Upcoming Satellite Operations
  • Satellite Shorts From All Over

General CubeSat/SmallSat info:

== Amazon Ad ==

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

The Space Show this week – Nov.11.2019

The guests and topics of discussion on The Space Show this week:

1. Monday, Nov. 11, 2019; 7-8:30 pm PST (9-10:30 pm CST, 10-11:30 pm EST) No program this week.

2. Tuesday, Nov. 12, 2019; 7-8:30 pm PST (9-10:30 pm CST, 10-11:30 pm EST): We welcome back we Jonathan Goff of Altius Space Systems.

3. Wednesday, Nov. 13, 2019: Hotel Mars. See Upcoming Show Menu and the website newsletter for details. Hotel Mars is pre-recorded by John Batchelor. It is archived on The Space Show site after John posts it on his website.

4. Friday, Nov. 15, 2019; 9:30-11 am PST (11:30 am -1 pm CST; 12:30-2 pm EST): We welcome back Dr. Alan Stern for New Horizons updates and much more.

5. Sunday, Nov. 17, 2019; 12-1:30 pm PST (3-4:30 pm EST, 2-3:30 pm CST): We welcome back Casey Dreier of the Planetary Society for Apollo history work and other new information.

Some recent shows:

** Sun, 11/10/2019Dr. Christopher Morrison and Dr. Marcelo Vazquez discussed space radiation issues.

** Fri, 11/08/2019Dr. Ella Atkins ( Prof.  at U. of Michigan’s Aerospace Engineering Dept., director of the Autonomous Aerospace Systems (A2SYS) Lab and is Assoc. Dir. of the Robotics Institute) discussed “IEEE Robotics & Automation, leveraging tech for space for the future, autonomous terrestrial, air & space vehicles, regulatory oversight, public perceptions/concerns, human spaceflight and more”.

** Tue, 11/05/2019Dr. Hal Doiron and Tom Wysmuller discussed the “climate science work by the Right Climate Stuff Group ( which consists of retired NASA Apollo veterans”.

** Mon, 11/04/2019Dr. Melissa Trainer of NASA Goddard gave  a “comprehensive look at the planned NASA Dragonfly Mission to Titan to look for signs of life and more”.

See also:
* The Space Show Archives
* The Space Show Newsletter
* The Space Show Shop

The Space Show is a project of the One Giant Leap Foundation.

The Space Show - David Livingston
The Space Show – David Livingston

== Amazon Ad ==

Come Fly with Us: NASA’s Payload Specialist Program
(Outward Odyssey: A People’s History of Spaceflight)

Everyone can participate in space