Video: Launch of Soyuz rocket with Progress cargo ship

Watch the launch of the latest Progress module to take cargo to the ISS:

The unpiloted ISS Progress 54 cargo craft launched from the Baikonur Cosmodrome in Kazakhstan on Feb. 5, bound for the International Space Station to deliver almost three tons of food, fuel, supplies and experiment hardware for the Expedition 38 crew. The new Progress lifted off on time from Baikonur at 11:23 a.m. EST (10:23 p.m. Baikonur time), reaching its preliminary orbit less than nine minutes later. A series of carefully choreographed engine firings were planned to enable the resupply vehicle to reach the station just four orbits, or six hours later for a linkup to the Pirs Docking Compartment. The Pirs port was vacated on Feb. 3 with the undocking of the old ISS Progress 52 cargo ship that will be deorbited on Feb. 11 to burn up in the Earth’s atmosphere.

Some background info at Progress spacecraft blasts off on quick trip to space station – Spaceflight Now.

Update: And just six hours after its launch, the Progress makes its rendezvous with the station and docks with it:

ESO: Asteroid internal structure revealed

An announcement from the ESO (European Southern Observatory):

The Anatomy of an Asteroid

ESO’s New Technology Telescope (NTT) has been used to find the first evidence that asteroids can have a highly varied internal structure. By making exquisitely precise measurements astronomers have found that different parts of the asteroid Itokawa have different densities. As well as revealing secrets about the asteroid’s formation, finding out what lies below the surface of asteroids may also shed light on what happens when bodies collide in the Solar System, and provide clues about how planets form.

Using very precise ground-based observations, Stephen Lowry (University of Kent, UK) and colleagues have measured the speed at which the near-Earth asteroid (25143) Itokawa spins and how that spin rate is changing over time. They have combined these delicate observations with new theoretical work on how asteroids radiate heat.

This small asteroid is an intriguing subject as it has a strange peanut shape, as revealed by the Japanese spacecraft Hayabusain 2005. To probe its internal structure, Lowry’s team used images gathered from 2001 to 2013, by ESO’s New Technology Telescope (NTT) at the La Silla Observatory in Chile among others [1], to measure its brightness variation as it rotates. This timing data was then used to deduce the asteroid’s spin period very accurately and determine how it is changing over time. When combined with knowledge of the asteroid’s shape this allowed them to explore its interior — revealing the complexity within its core for the first time [2].

This is the first time we have ever been able to to determine what it is like inside an asteroid,” explains Lowry. “We can see that Itokawa has a highly varied structure — this finding is a significant step forward in our understanding of rocky bodies in the Solar System.”

The spin of an asteroid and other small bodies in space can be affected by sunlight. This phenomenon, known as the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, occurs when absorbed light from the Sun is re-emitted from the surface of the object in the form of heat. When the shape of the asteroid is very irregular the heat is not radiated evenly and this creates a tiny, but continuous, torque on the body and changes its spin rate [3][4].

Loading player…

This artist’s impression, based on detailed spacecraft observations, shows the strange peanut-shaped asteroid Itokawa. By making exquisitely precise timing measurements using ESO’s New Technology Telescope a team of astronomers has found that different parts of this asteroid have different densities. As well as revealing secrets about the asteroid’s formation, finding out what lies below the surface of asteroids may also shed light on what happens when bodies collide in the Solar System, and provide clues about how planets form.

Lowry’s team measured that the YORP effect was slowly accelerating the rate at which Itokawa spins. The change in rotation period is tiny — a mere 0.045 seconds per year. But this was very different from what was expected and can only be explained if the two parts of the asteroid’s peanut shape have different densities.

This is the first time that astronomers have found evidence for the highly varied internal structure of asteroids. Up until now, the properties of asteroid interiors could only be inferred using rough overall density measurements. This rare glimpse into the diverse innards of Itokawa has led to much speculation regarding its formation. One possibility is that it formed from the two components of a double asteroid after they bumped together and merged.

Lowry added, “Finding that asteroids don’t have homogeneous interiors has far-reaching implications, particularly for models of binary asteroid formation. It could also help with work on reducing the danger of asteroid collisions with Earth, or with plans for future trips to these rocky bodies.

This new ability to probe the interior of an asteroid is a significant step forward, and may help to unlock many secrets of these mysterious objects.

===

Find more images and videos here.

Space policy roundup – Feb.5.14 [Updated]

More space policy/politics related links:

Update:

Video: A test of diet to prevent bone loss in micro-g

This video presents an interesting discussion of a test of whether nutrition can affect the bone density of crew members of the ISS:

Space Station Live commentator Pat Ryan conducts an interview with Dr. Scott M. Smith, the principal investigator of the Pro K experiment. The experiment is NASA’s first evaluation of a dietary countermeasure to lessen bone loss of astronauts. Pro K proposes that a flight diet with a decreased ratio of animal protein to potassium will lead to decreased loss of bone mineral. Read more…

http://www.nasa.gov/mission_pages/sta…

Global Space Balloon Challenge

Here’s an announcement from the Stanford Student Space Initiative:

Global Space Balloon Challenge

Ever wanted to build something and send it to space? The Stanford Student Space Initiative and the Michigan Balloon Recovery and Satellite Testbed team invite you to the Global Space Balloon Challenge (GSBC)! The GSBC is an international education outreach project to encourage people from around the world to build and launch their own high altitude balloons- teams from 12 countries from 6 continents have already signed up!

Between April 18 – 21, 2014, teams from all over will launch balloons to the edge of space, recover them, and share the photos and data that they have collected.  No prior building experience is required – the project is targeted at new and experienced hobbyists alike – and GSBC organizers will guide you through every step of the process. The goal is to encourage people of all ages to get their hands dirty building their own space hardware, and to promote the spirit of hardware hacking and international STEM collaboration. For more information head to http://www.balloonchallenge.org/.

Everyone can participate in space