Category Archives: Space transport roundup

Latest on all means of traveling to, from and in space.

Space transport roundup – Mar.27.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** Starship prototype SN4 heads for low altitude test flight after passing propellant tank pressure testing. According to Elon Musk, a single Raptor engine will be attached to SN4 this week. After a static firing test on the pad, they will attempt a 150 meter hop:

For details, see:

Find more SpaceX items below

** Major wing components for Sierra Nevada’s Dream Chaser delivered:

Sierra Nevada Corporation (SNC), the global aerospace and national security leader owned by Eren and Fatih Ozmen, uncrated both wings for its Dream Chaser spaceplane this month at the company’s Louisville, Colorado production facility. The wings’ arrival kicks off the much-anticipated integration phase of a beautiful and critical differentiator for Dream Chaser, the world’s only spaceplane owned by a private company and under contract with NASA.

“The wings are here and now we truly have butterflies in anticipation of this integration phase for Dream Chaser,” said SNC President Eren Ozmen. “Our spaceplane looks and functions unlike anything else in space – more technologically advanced but with all the heritage of the space shuttle program in its design. Dream Chaser’s first flight will be a soaring moment for all of us.”

The arrival kicks off the integration of the complex Wing Deployment System (WDS) as part of the continued assembly and integration of the vehicle. With their innovative folding design, the wings are stowed in the fairing ahead of launch. After the launch vehicle separates, the WDS deploys the wings and locks them into place. Dream Chaser’s steeply angled wings function as stabilizers for the lift generated by the body of the vehicle.

“The wings for Dream Chaser presented an interesting design challenge,” said Dream Chaser program director John Curry. “Not only must they survive in low-Earth orbit like a satellite, but they need to be operational in Earth’s atmosphere, like an aircraft.” Just like the structural body for Dream Chaser, the wings were manufactured by Lockheed Martin in Texas, a subcontractor to SNC, and are single bonded composite structures. This state-of-the-art technology saves weight without compromising strength and stiffness.

Dream Chaser is under contract with NASA for at least six cargo resupply and return service missions to the International Space Station under the Commercial Resupply Services 2 (CRS-2) contract. The Dream Chaser and attached Shooting Star transport vehicle can carry up to 12,000 pounds of supplies and other cargo, and returns delicate science to Earth with a gentle runway landing.

Dream Chaser wings. Credits: SNC

See also: Dream Chaser receives her wings ahead of flying to the ISS – NASASpaceFlight.com

** Russian Soyuz rocket sends Progress cargo vehicle to the ISS on April 24th from the Baikonur Cosmodrome in Kazakhstan.

Rendezvous and docking happened just four hours after liftoff:

The unpiloted Russian ISS Progress 75 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan on April 24 (April 25, Kazakhstan time) atop a Soyuz 2.1a booster, bound on a fast-track, two-orbit trip to deliver some three tons of food, fuel and supplies to the residents of the International Space Station. Less than four hours after launch, the Progress executed an automated docking to the aft port of the Zvezda Service Module where it will remain until December.

** Virgin Galactic continues a series of STEM tutorials with an episode on “Testing a spaceship” – Virgin Galactic – YouTube

Join this #ScienceWithVirginGalactic Spacechat as we explain how we test a spaceship to get it ready for commercial service.

** Interview with Rocket Lab CEO Peter Beck:

Welcome to IN DEPTH Episode 8 of What about it!? I’ve had a conversation with Peter Beck, CEO of Rocket Lab. We talked about Electrons mid-air recovery, Photon and why it will change the Small-Sat business and about his plans for the future, including a personal goal to explore Venus to find out, if life could exist in our neighbours atmosphere!

** “An Overview of Firefly Aerospace, Vehicles and Capabilities” – Eric Salwan, Firefly Aerospace – FISO presentation: Slides (pdf)

And another update here: This Rocket Company Is Staying Calm, Carrying On With Fresh Contract And A New Launch Date – Forbes

As of this week, there are roughly 300 employees in Firefly, and more hires are coming quickly on the production side, to prepare for the first flight. “The secret to success in this business is staying focused,” Markusic said of Firefly’s efforts to send its first rocket aloft, which has experienced a few delays along the way. (But as any space company will point out, hardware development is difficult and costly, especially when novel technology is involved.)

There have been challenges in developing the Alpha rocket, whose novel features include propellant tanks and structures are built with carbon fiber composites, to reduce cracks and leaks while storing supercooled liquid oxygen. Estimates for the first launch date have been pushed back a few times, and a fire broke out during testing of a rocket stage in January.

But the payoff should be worth it in the long run, chief revenue officer Brad Schneider said during the same interview. Firefly projects that once the rocket starts flying, the company should see a “ramp” in revenues as money flows in from paying customers. Providing the test launch in 2020 goes to plan, revenues should start flowing faster in 2021 and accelerate in 2022, getting to a break even point relatively quickly after the upfront $165 million cost in development, preparing for the first flight and building the first two vehicles.

** Scott Manley reports on the latest Iranian launch of a satellite, achieving orbit successfully for the first time:

Earlier this week Iran made their first successful satellite launch in a long time using a new rocket design named ‘Qased’. What’s most striking is that this is a miliatry launch vehicle using new solid propellent motor which is more advanced than any they’ve flow before, and it might just be the first of many developments of the technology.

** The details of the BPM100 bi-propellant engine designed by the Copenhagen Suborbitals team are illustrated in this snazzy animation:

Follow developments of the engine and the Spica rocket, for which it is intended, on the Copenhagen Suborbitals blog.

** Briefs:

==================

Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Starship Factory, Axiom’s Modules, Starliner Revelations
Vol. 15, No. 2, March 28, 2020

Space Frontier Foundation Award for NewSpace Journalism

==================

** SpaceX:

** Falcon 9 launched another batch of 60 Starlink satellites last week. First stage and both halves of the fairing nosecone were recovered. The number of Starlink satellites in operation now exceeds 400.

Over the weekend, the booster returned to Port Canaveral following its fourth flight:

B1051.4 Looks good. We are a US disabled veteran run, non-profit video production company whose mission is to bring other disabled US Veterans to witness a launch, experience US Space History and become part of our report. Our nonprofit 501(c)(3) is 100% tax deductible, just go to our webpage www.USLaunchReport.com which is merged with www.VeteransSpaceReport.com and find our Donate button. You can help change the life of a US Veteran.

And here is a video report on the return of the two ships with the fairings, which were scooped from the ocean. No attempt was made this time to catch the fairing shells in nets.

Join NSF’s Julia Bergeron (@Julia_bergeron) for an overview of the SpaceX Fleet recovery operations in Port Canaveral, including the return of the fairings from the seventh Starlink launch and JRTI update.

See also:

** Beautiful video imagery of the latest Falcon launchCosmic Perspective – YouTube:

Watch as we place cameras and microphones at SpaceX launchpad 39A during coverage of Starlink 6. This behind-the-scenes episode mixes liftoff footage, audio recordings and music to share some of the beauty and excitement of what it was like to be there, on the ground, documenting. We also get an incredible opportunity to share unique views of Falcon 9 from remote autonomous camera position and close-in telescopic zooms. I can’t believe one of our high-speed cameras caught those birds in flight!! Learn and see more from SpaceX Starlink 6: https://www.cosmicperspective.com/sta…

** The culprit behind the premature engine shutdown during the previous Starlink mission appears to have been a maintenance mistake rather than a breakdown in the engine’s hardware: This was the first time a F9 booster had flown a fifth time.

** Preparations intensifying for first crewed Dragon mission to the ISS, currently set for May 27th.

And preparations are underway for the first operational  Crew mission after this final test:

** Falcon Heavy will serve as a multi-satellite launcher for military payloads: SpaceX’s next Falcon Heavy launch on track to carry multiple military satellites – Teslararti

According to one of the US Space Force 44 (USSF-44) mission’s satellite providers, SpaceX’s next Falcon Heavy launch remains on track for late 2020 and will apparently be carrying more than one military satellite to orbit.

** Starship

**** Elon Musk sees orbital Starship/Super Heavy becoming operational in a couple of years. The system will enable new and enhanced capabilities such as multiple large in-space telescopes.

**** Here is a series of videos showing activities that led up to last night’s successful tanking tests for SN4 plus scenes of assembly of SN5:

****** April 23: Starship prototype SN4 rolled to the launch padNASASpaceflight – YouTube

****** April 25: SpaceX Boca Chica – Starship Nosecone Stacking – SN4 Preps – NASASpaceflight – YouTube

While Starship SN4 continues preps for its test campaign at the launch site, a nosecone stacking operation was conducted at the launch site. See Elon’s tweet for SN allocation context: https://twitter.com/elonmusk/status/1… Video and Photos via Mary (@BocaChicaGal).

****** April 25: SpaceX Boca Chica – SN5 Bulkhead Flipped – NASASpaceflight – YouTube

While Starship SN4 pre-test work continues at the Boca Chica launch site, preparations for SN5 stacking continues with the customary flipping of a bulkhead. Video and Photos via Mary (@BocaChicaGal). Edited by Jack Beyer (@thejackbeyer).

***** April.27: 4K SpaceX SN4 Cryogenic Test Time Lapse – LabPadre – YouTube

** Webcast rocket reports:

**** Marcus House: SpaceX Starship SN4 Pressure Test, Crew Dragon Demo-2 and Starlink News – April.25.2020

**** What about it? SpaceX Starship Updates – Starship SN4 Passes Cryo Test – April.27.2020

=== Amazon Ad ===

Xtronaut: The Game of Solar System Exploration

Space transport roundup – Apr.18.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** NASA and SpaceX set target date of May 27th for first launch of astronauts to the ISS on a Crew Dragon vehicle:

A new era of human spaceflight is set to begin as American astronauts once again launch on an American rocket from American soil to the International Space Station as part of NASA’s Commercial Crew Program. NASA astronauts Robert Behnken and Douglas Hurley will fly on SpaceX’s Crew Dragon spacecraft, lifting off on a Falcon 9 rocket at 4:32 p.m. EDT on May 27, from Launch Complex 39A in Florida, for an extended stay at the space station for the Demo-2 mission. The specific duration of the mission is to be determined.

As the final flight test for SpaceX, this mission will validate the company’s crew transportation system, including the launch pad, rocket, spacecraft, and operational capabilities. This also will be the first time NASA astronauts will test the spacecraft systems in orbit.

“The SpaceX Crew Dragon spacecraft undergoes final processing at Cape Canaveral Air Force Station, Florida, in preparation for the Demo-2 launch with NASA astronauts Bob Behnken and Doug Hurley to the International Space Station for NASA’s Commercial Crew Program. Crew Dragon will carry Behnken and Hurley atop a Falcon 9 rocket, returning crew launches to the space station from U.S. soil for the first time since the Space Shuttle Program ended in 2011.” Credit: SpaceX

Scenes of NASA astronauts heading to the pad:

Find more SpaceX items below

** Virgin Orbit completes final major test before first LauncherOne flight – Cryogenic Captive Carry Test:

Our recent cryogenic (LN2) captive carry flight represented the most realistic rehearsal of our launch system and procedures to date, and we couldn’t be happier with the results. Virgin Orbit CEO Dan Hart had a few words to share as we ready ourselves for an orbital launch demonstration next.

See also Virgin Orbit completes final major test before first LauncherOne flight – SpaceNews.com.

** Virgin Galactic is holding online STEM sessions regarding various aspects of suborbital spaceflight. This one dealt with how a suborbital spaceplane is designed.

Join this #ScienceWithVirginGalactic Spacechat as we explain how to design a spaceship so that it can successfully travel to space and back.

** More about catching an Electron booster. Tim Dodd, the Everyday Astronaut, interviews Rocket Lab CEO Peter Beck: How To Catch A Rocket From Space With A Helicopter (Peter Beck Interview, April 2020)

Rocket Lab has been making some impressive progress on their efforts to recover the booster stage of their Electron Rockets. I caught up with Rocket Lab CEO and Founder, Peter Beck, and got a run down on some of the exciting things they’re working on! Need a rundown on how Rocket Lab will catch a rocket with a parachute and a helicopter, and why it hasn’t been done before? I’ve got you covered! – https://www.youtube.com/watch?v=ZIaDW…

Rocket Lab is winning payload contracts:

** Launcher Space to test engines for smallsat rocket at NASA Stennis facility: Launcher to test engines at Stennis – SpaceNews.com

Small launch vehicle startup Launcher has signed an agreement with the Stennis Space Center to test engines at the Mississippi facility.

The New York-based company signed a Space Act Agreement with Stennis at the end of March to use the E-1 test stand at the center for tests of its engine, coincidentally named E-2, it is developing for a small launch vehicle.

The type of engines that will be tested at Stennis:

** Germany’s Isar Aerospace raises $17M and opens new facility near Munich for production of the Spectrum rocket for smallsat launch: Isar Aerospace Expands Into Next-Generation Rocket Production Facilities Near Munich – SpaceWatch.Global

The largely automated produced products that will be integrated at the new facilities are designed for scalability to meet the growing demand for satellite constellation deployment. “With our new premises, we are increasing the space available to our company for engineering, production and testing to over 15,000 square metres”, says Daniel Metzler, CEO of Isar Aerospace. “In-house production is an important milestone on the way to our launch vehicle’s maiden flight within the next two years”.

Isar recently arranged to test the engines for the Spectrum at the Esrange facility in northern Sweden: SSC signs contract with Isar Aerospace – SSC – Swedish Space Corporation.

Swedish Space Corporation, SSC, and German space tech company Isar Aerospace have signed a long-term contract for testing of a new generation of European rocket engines for minilaunchers at Esrange Space Center in Sweden. The agreement includes a rocket stand for vertical tests and the agreement can be extended to include rocket stage tests with multiple rocket engines.

Illustration of a Spectrum rocket in flight. Credits: Isar Aerospace

The liquid fueled Aquila engine was developed in-house:  Isar Aerospace: High-performance rocket engines – ESA

The company team builds upon extensive experience in rocket engine and sounding rocket design and testing from Technical University Munich.

Now hosted at ESA Business Incubation Centre (BIC) Bavaria, Isar Aerospace is currently are working on developing high-performance technologies powered by a combination of hydrocarbon mixtures and liquid oxygen which could make conventional, toxic rocket fuels obsolete.

** Firefly cites progress towards first launch of the Alpha rocket this summer:

** The economics of reusable rocket vehicles continues to be disputed by management of companies looking for excuses not to pay for the development of their own reusable rockets.

** Northrop Grumman MEV-1 module provides station-keeping propulsion for an Intelsat satellite in geostationary orbit. The satellite is out of propellants for its own propulsion system so the MEV-1 attached itself to the satellites nozzle and will control it for about 5 years. Today the satellite was officially returned to full operation. Intelsat 901 Satellite Returns to Service Using Northrop Grumman’s Mission Extension Vehicle | Northrop Grumman

Intelsat (NYSE: I) today announced that Intelsat 901 has returned to service following the successful docking with the first Mission Extension Vehicle (MEV-1) from Northrop Grumman Corporation (NYSE: NOC) and the company’s wholly-owned subsidiary, SpaceLogistics LLC, on February 25 – the first time that two commercial spacecraft docked in geostationary orbit.

Since the February rendezvous, MEV-1 has assumed navigation of the combined spacecraft stack reducing its inclination by 1.6° and relocating IS-901 to its new orbital location. Intelsat then transitioned roughly 30 of its commercial and government customers to the satellite on April 2. The transition of service took approximately six hours. IS-901 is now operating at the 332.5°E orbital slot and providing full service to Intelsat customers.

Intelsat views life-extension services, like MEV technology, as a cost-effective and efficient way to minimize service disruptions, enhance the overall flexibility of its satellite fleet and better support the evolving needs of its customers.

** Briefs:

** SpaceX:

** SpaceX test fired a Falcon 9 on the pad today in preparation for the launch of 60 more Starlink satellites on April 23rd: SpaceX test-fires rocket for Starlink launch next week – Spaceflight Now

**** Starship

****** SpaceX has made rapid progress towards assembly of the SN4 Starship prototype. The stacking of all but the nosecone has been completed. Dates for closing the road that passes near the launch pad have been filed. If the vehicle survives the tank pressure tests, low altitude flights will follow.

Segments for the SN5 vehicle have been spotted in construction as well.

The following videos mark the day-by-day developments in the SN4 and SN5 construction:

****** April 13 – SpaceX Boca Chica – Preparing Launch Site for Starship SN4 – NASASpaceflight – YouTube

Preparations to ready SpaceX’s Boca Chica launch pad for the arrival of Starship SN4 are continuing as the engine section prepares for stacking. Video and Photos via Mary (@BocaChicaGal). Edited by Jack Beyer (@thejackbeyer).

****** April 14 – SpaceX Boca Chica – Delivery Day in prep for Starship SN4 – NASASpaceflight – YouTube

Delivery Day at SpaceX Boca Chica, a very windy day too, possibly a reason there wasn’t the completion of Starship SN4 stacking today, but the stage is being set. Video and Photos via Mary (@BocaChicaGal). Edited by Jack Beyer (@thejackbeyer).

****** April 15 – SpaceX Boca Chica – Starship SN4 Engine Section in the VAB for Stacking – NASASpaceflight – YouTube

Starship SN4 Aft and Engine Section lifted into the VAB/Windbreak for final stacking operations at SpaceX Boca Chica. Video and Photos via Mary (@BocaChicaGal). Edited by Jack Beyer (@thejackbeyer).

****** April 15 – SpaceX Boca Chica – Starship SN5 Production – NASASpaceflight – YouTube

Bonus video concentrating on the early stages of Starship SN5’s production, including three bulkheads and barrel sections in preparation at SpaceX Boca Chica. Video and Photos via Mary (@BocaChicaGal).

** April 17 – SpaceX Boca Chica – Starship SN4 Stacked – SN5 Progress – NASASpaceflight – YouTube

Starship SN4 has been stacked inside the SpaceX Boca Chica VAB/Windbreak, while Starship SN5’s top bulkhead stepped outside to watch. Video and Photos via Mary (@BocaChicaGal). Edited by Jack Beyer (@thejackbeyer).

**** Video reports on Starship:

[ Update: New Marcus House report:

]

****** Marcus House: SpaceX Starship SN4 News, Goodbye Cargo Dragon 1 and Rocket Lab Mid-Air Recovery Demo

Today we cover SpaceX Starship SN4 News. We say goodbye to Cargo Dragon 1 and check out Rocket Lab Mid-Air Recovery Demo. After last week’s loss of the SN3 Starship we’ve been super surprised to see the SN4 come together very rapidly with many of the ship segments s needed for the new build. They really are pumping out these Starship prototypes now faster than what I had even expected. Along with that, we say goodbye to the very last Dragon 1 capsule with its return from the CRS-20 mission. We witnessed some amazing new unseen footage from SpaceX released fresh this week. Just incredible how close this landing was from 2017. Then on top of all that Rocketlab pulls out all the stops with this amazing mid-air recovery demonstration with an Electron test tank and two sleek-looking helicopters capturing it right out of the air.

****** mic of orion: SpaceX Starship SN 4 Progressing Fast

Remarkable progress on Starship SN-4, dayus after accident with Starship SNM-3 is something that demands respect. Starshi SN-04 isn’t even in testingh phase work on Starship SN-5 has already started with pre-fabricated rings, sections of the future fuel tanks and even engines will be ready

== Amazon Ad ==

See You In Orbit?:
Our Dream Of Spaceflight

Space transport roundup – Feb.26.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** First orbital Astra orbital rocket launch is currently set for liftoff from the Pacific Spaceport Complex – Alaska (PSCA) on Kodiak Island during the window 3:30-6:30 pm EST ( 2030-2330 GMT)on February 27th: Astra, DARPA prepare for upcoming launch challenge – NASASpaceFlight.com

Thursday’s launch will be the third for Astra, coming after two launches in July and November 2018. Both launched from the PSCA in Alaska. These were originally believed to be failures. However, Astra stated that the first was successful, and the second was only “shorter than planned”. Neither were designed to reach orbit, as they didn’t have functioning second stages.

The company was known for operating in almost complete secrecy. Very little was known about their rockets, tests, and launch attempts. The only public sighting of an Astra rocket was by a news helicopter in early 2018. Their first rocket, named “Rocket 1.0”, was spotted being readied for a test at the former Naval Air Station Alameda in Alameda, California – just down the street from their factory.

However, Astra recently came out of the shadows, and has released some information about their operations.

Their current rocket, named “Rocket 3.0”, is a two-stage, five-engine, kerosene and liquid oxygen-powered rocket. The pumps of the first stage engines are powered by electric motors, similar to the Rutherford engines on Rocket Lab’s Electron rocket.

A DARPA video about Astra:

More about Astra‘s rockets from Scott Manley:

About 18 Months ago I covered Astra, a small rocket startup based only a few miles from my home. They were still a ‘Stealth’ company, and would not publicly acknowledge what they were doing, even after a pair of suborbital tests which failed due to engine problems. However they’re now speaking publicly, and making a lot of noise about their smallsat launcher and their first orbital launch attempt only a few days from now.

See also Fresh out of stealth mode, Astra gearing up for orbital launch from Alaska – Spaceflight Now.

** SpaceX sets March 6th for Falcon 9 launch of Cargo Dragon mission CRS-20:

SpaceX is now targeting March 6 at 11:50 p.m. EST for launch of its 20th commercial resupply services mission (CRS-20) to the International Space Station. During standard preflight inspections, SpaceX identified a valve motor on the second stage engine behaving not as expected and determined the safest and most expedient path to launch is to utilize the next second stage in line that was already at the Cape and ready for flight. The new second stage has already completed the same preflight inspections with all hardware behaving as expected. The updated target launch date provides the time required to complete preflight integration and final checkouts.

The cargo Dragon will lift off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida carrying more than 5,600 pounds of science investigations and cargo to the station, including research on particle foam manufacturing, water droplet formation, the human intestine and other cutting-edge investigations.

** The next Falcon 9 launch of 60 Starlink satellites is set for March 11 from LC-39A, Kennedy Space Center, Florida.

More SpaceX items below

** Soyuz 2-1a rocket launches Meridian M satellite from the Plesetsk cosmodrome on Feb. 20th: Soyuz 2-1a launches ninth Meridian satellite – NASASpaceFlight.com

Russia’s Soyuz-2-1a rocket made its first launch of 2020 on Thursday, carrying the ninth Meridian communications satellite into orbit. Having lifted off from the Plesetsk Cosmodrome in northern Russia at 08:24 UTC, Soyuz deployed its Fregat-M upper stage about nine minutes later to carry the satellite to its final elliptical orbit. Spacecraft separation occurred two hours and twenty minutes after launch.

Meridian is a network of satellites that provide the Russian Government with communications for military and installations in the country’s far northern regions. The Meridian constellation forms part of Russia’s Integrated Satellite Communications System, complimenting the geostationary Globus – or Raduga – series of communications satellites.

** China launches four technology demonstrator satellites on Long March-2D rocket: Long March-2D conducts maiden launch from Xichang with four satellites – NASASpaceFlight.com

Taking precautions with the coronavirus outbreak in all orbital and space launch centers, China returned to its launch activities after the Chinese New Year festivities with a new launch from the Xichang Satellite Launch Center.

This was the first use of a Long March-2D (Chang Zheng-2D) launch vehicle from Xichang. The mission orbited four satellites that will be used to carry out inter-satellite link networking and new ground observation technology tests in orbit. The launch took place from the LC3 Launch Complex at 21:07UTC.

Named Xinjishu Shiyan-C to F, XJS-C and D were made by SAST, XJS-E by the Harbin Inst of Tech. and XJS-F by CAST’s DFH Satellite Co., Ltd. (DFHSat).

** PLD Space of Spain carries out full duration test firing of the TEPREL-B engine for the MIURA 1 suborbital rocket. PLD Space successfully achieved a full rocket engine test for MIURA 1 mission – PLD Space

In May 2019 PLD Space suffered a catastrophic engine failure, which provoked material damage, including the loss of the first flight version of the TEPREL-B liquid rocket engine, developed by PLD Space for MIURA 1 launch vehicle. Therefore, the company decided to pause the qualification process and analyse the root causes of the failure to solve the problems found.

After eight months of hard work, PLD Space successfully achieved a full mission duration hot test of the flight engine. This allowed the company to validate the nominal engine performance during the full mission duration burn of two minutes, the necessary time to boost MIURA 1 launch vehicle into space.

“This milestone is a huge step forward for PLD Space, for the Spanish space sector and the European small launcher competitiveness, and allow us to be one of the few companies in the world that has successfully developed, tested and qualified propulsion technologies for space launch vehicles. Achieving this important milestone implies a turning point in the commercial space race and take us a step closer for launching MIURA 1 into space. With this result, PLD Space has a rocket engine capable of reaching space soon”, Raúl Torres, CEO and co-founder of PLD Space.

** Relativity Space shows off a 3D printed upper stage propellant tank:

** Venture Orbital Systems of Europe aims to launch the small Zephyr orbital rocket up to 40 times per year. First flight is targeted for 2024:

An article about Venture Orbita: CubeSat Market, The Zephyr is Positioned – Space Chronicle (Google Translate):

To start its activity, Venture Orbital needs an initial fundraising of 2.5 million euros. Depending on the information available, Zephyr can launch a payload of 35 kg in sun synchronous orbit (SSO) and 40 kg in low orbit (LEO) at an altitude of 500 km. This represents approximately the equivalent of three 6 U satellites. The launcher is ideal for placing small payloads into orbit intended in particular for Earth observation (EO), crop improvement, studying climate change or to improve access to emergency services in the event of crises. The company is not afraid to display its ambitions and has set itself the goal of arriving at up to 40 launches per year from the Guyana Space Center (CSG). The small structure also aims to offer its future availability of the Zephyr in a range of times ranging from three to six months. Launch price: around 1 million euros per mission. The company announces that it already has several contacts.

** Elevating Unity – Episode 6: SpaceShipTwo Relocation to Spaceport America

Want to fly to space with us? Register to stay up to date with the latest from the world’s first commercial spaceline https://virgingalactic.com/join-us/

** An update on Indian reusable space transport development: A Deep Dive Into ISRO’s Reusable Launch Vehicle Technology – Part I | Delhi Defence Review

The Indian Space Research Organization (ISRO) has long sought to lower the cost of access to space. In keeping with this goal, ISRO embarked on the Reusable Launch Vehicle-Technology Demonstration (RLV-TD) Program more than decade ago. As part of the RLV-TD program, it has been developing various technologies that will serve as building blocks for a future Two-stage-to-orbit (TSTO) reusable launch vehicle. Importantly, these technologies are being developed in phases through a series of experimental flights. While the first flight of the RLV-TD, dubbed the ‘hypersonic flight experiment’ (HEX), was successfully executed on May 23, 2016, the stage is now set for the return flight experiment (REX) and scramjet propulsion experiment (SPEX) missions, respectively. LEX, in particular, is expected to be performed in the coming months.

A diagram of the Indian uncrewed reusable spaceplane.

** SpaceX:

** First SpaceX crew mission may last longer than initially planned:

** Upcoming Falcon 9 launch from Cape Canaveral to send Argentine satellite into a polar orbitSpaceX sets date for first Florida launch of its kind in more than half a century – Teslarati

Argentinian space agency CONAE says that both its SAOCOM 1B satellite and SpaceX are on track for a type of launch that the United States’ East Coast hasn’t supported in more than half a century.

CONAE has revealed that SpaceX aims to launch the ~2800 kg (6200 lb) radar Earth observation satellite into orbit on a Falcon 9 rocket as early as March 30th, 2020 – late next month. With such a light payload, the Falcon 9 booster – presumably reused – will be able to perform a Return to Launch Site (RTLS) recovery, touching down at one of SpaceX’s two Landing Zone (LZ) pads located at Cape Canaveral Air Force Station (CCAFS). While Landing Zone rocket recoveries have become increasingly rare for SpaceX, that’s not actually why the SAOCOM 1B mission is so unique.

Instead, it’s exceptional because it will be the United States’ first East Coast polar launch in nearly six decades. The mission’s “polar” launch profile refers to the fact that the Argentinian radar satellite will ultimately orbit Earth’s poles, effectively perpendicular to more common equatorial orbits. If successful and repeatable, the mission could ultimately spark a new era for CCAFS and Kennedy Space Center (KSC) and raises big questions about the future of California’s Vandenberg Air Force Base (VAFB) — or at least SpaceX’s presence there.

** Falcon 9 first stage will attempt a landing during an operational launch of a military satellite for the first time: SpaceX’s next military launch cleared for historic rocket landing attempt – Teslarati

Effectively confirming that B1054’s demise was was a contrivance and by no means a technical necessity, the SMC announced on February 20th that SpaceX’s GPS III SV03 mission is officially “the first time a booster is planned to land on a drone ship during a NSS [National Security Space] launch.” Effectively identical to B1054 aside from the addition of grid fins and landing legs, this means that Falcon 9 booster B1060 will be able to attempt a landing aboard a SpaceX drone ship shortly after launch.

**** Everyday Astronaut Tim Dodd captures some of the sound and flame-y fury of a Falcon 9 launch:

**** Starship

**** Reports and commentary on the Starship program:

Eric Berger tweets::

Some details on Starship’s first orbital flight:

• Pushing hard for this year
• Six-engine Starship
• Likely from Boca Chica, but also pursuing Florida and sea-based platform
• SN3, SN4, or SN5 probably will make flight

***** Some recent Tweets from Elon Musk about the Starships:

***** A diagram showing the latest assembled sections of the SN1 Starship:

**** Videos of recent activities at the Boca Chica Beach facility in South Texas – NASASpaceflight – YouTube

****** SpaceX Progress With Maria Pointer – Feb.23.2020LabPadre

Spacex is in full gear at Boca Chica, Texas. New buildings. New cranes. New ground being broken. Employees have grown exponentially. Video credit @BocaChicaMaria1

****** SpaceX Boca Chica – Starship SN1 Night Ops to Downcomer Checks – Feb.23.2020 – NASASpaceflight – YouTube

24 hours a day operations at SpaceX Boca Chica as workers prepare SN1 for the upcoming rollover to the launch site. Video runs from Night Ops through to Sunday work. Videos and Photos from Mary (@bocachicagal) for NSF.

***** SpaceX Mega Stack Highlights W/ Maria Pointer – Feb 24, 2020 – LabPadre

Close up Mega stack highlights and other progressions at SpaceX BocaChica, Texas. Video Credit: @BocaChicaMaria1

****** SpaceX Boca Chica – Starship SN1 moved to the launch site – Feb.25.2020 – NASASpaceflight – YouTube

In Boca Chica, SpaceX’s Starship SN1 was transported to the launch site on Tuesday ahead of proof testing and a static fire test which will be conducted over the coming days. Videos and Photos from Mary (@bocachicagal) for NSF.

****** SpaceX Starship SN1 Loaded Up On Test Stand Time Lapse – Feb.25.2020 – LabPadre

SN1 was load up onto the test stand at Boca Chica Launch Pad. My apologies on the low quality video. All images are explicitly owned by LabPadre Media. Filmed live on location with Maria Pointer. @BocaChicaMaria1

**** SpaceX granted permit to open facility at Port of LA for Starship related manufacturing:

== Amazon Ad ==

The Case for Space:
How the Revolution in Spaceflight Opens Up
a Future of Limitless Possibility

Space transport roundup – Feb.6.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

[Update 23:00 EST: The OneWeb satellites were successfully deployed into the target orbits: OneWeb successfully launches 34 more satellites into orbit | OneWeb

OneWeb, the global communications company with a mission to bring connectivity to everyone everywhere, today announced the successful launch of 34 satellites, aboard a Soyuz launch vehicle from the historic Baikonur Cosmodrome, Kazakhstan.

Lift-off occurred on February 06th at 21:42 pm UTC. The OneWeb satellites separated from the rocket and were dispensed in nine batches over a period of several hours.

This launch is the second successful launch in one of the largest civilian satellite launch campaigns in history. It will help build OneWeb’s phase one constellation of 648 satellites that will deliver high-speed, low-latency global connectivity, while addressing the world’s most pressing connectivity problems.

The communications company is on schedule to provide global coverage to customers in 2021, starting with the first commercial services in the Arctic this year. This follows OneWeb both securing global priority spectrum rights and successfully launching its first batch of satellites in 2019.

OneWeb’s network will provide a unique combination of high data throughput, low latency, true global coverage and a range of user terminals for multiple markets including maritime, aviation, government and enterprise.

Update 19:06 EST: The Soyuz launch of the OneWeb satellites reached orbit successfully this afternoon (US Eastern time). The Fregat-M upper stage is currently carrying out a series of burns that will culminate in the release of the satellites starting at around 20:30 this evening.:

Although the launch is on a Russian rocket from the famous Baikonur Cosmodrome in Kazakhstan, the launch is considered an Arianespace operation due to the collaboration with the Euro-Russian Starsem company. Starsem also launches Soyuz rockets from the Arianespace facility in Kourou, French Guiana.

More about the launch and OneWeb:

*** Transport from space to East Russia took place today as well with the return of a Soyuz capsule from the ISS with NASA astronaut Christina Koch, European astronaut Luca Parmitano, and Aleksandr Skvortsov. Koch set “a record for the longest single spaceflight in history by a woman”.

]

** Three rocket launches coming up soon:

34 OneWeb satellites mounted on deployer for launch on Soyuz rocket. Credits: OneWeb

** The previously launched Cygnus cargo vehicle left the ISS last week:  

**  Astra rocket company comes out of stealth mode as first orbital launch attempt approaches: A Small-Rocket Maker Is Running a Different Kind of Space Race – Bloomberg

Alongside its rocket test building, Astra has been assembling a 250,000-square-foot manufacturing facility that Kemp says will be able to churn out hundreds of rockets a year. “Our strategy is to always focus on the bottom line,” he says. “Nothing is sacred. We’re able to profitably deliver payloads at $2.5 million per launch, and our intent is to continue to lower that price and increase the performance of our system.”

See the timeline of the company’s milestones here.

** Rocket Lab successfully launches first Electron mission of 2020:

In addition to the successful placement of the NRO satellite into orbit, additional progress was made towards the goal of recovering and reusing the Electron first stage:

The re-entry test for ‘Birds of a Feather’ is the second time Rocket Lab has guided an Electron first stage booster down to sea-level, following on from the first successful re-entry test conducted on the ‘Running Out of Fingers’ mission in December 2019. Once again, initial analysis shows the stage made it back to sea-level intact following a guided descent, proving that Electron can withstand the immense heat and forces generated on re-entry.

To guide the stage to a planned splashdown, Electron’s first stage was equipped with on-board guidance and navigation hardware, including S-band telemetry and onboard flight computer systems. The stage was also equipped with a reaction control system to orient the booster 180-degrees for its descent and keep it dynamically stable for the re-entry.

Webcast:

** Virgin Orbit nears first flight of the LauncherOne rocket:

** Virgin Galactic‘s WhiteKnightTwo carrier aircraft returns to Mojave. The WK2 will to take  SpaceShipTwo Unity to Spaceport America in New Mexico where the SS2 will do some test flights before starting operational flights with paying customers

Here’s a video of the WK2 activities at Mojave via NASASpaceflight.com:

Virgin Galactic’s White Knight 2 mothership does 3 low approaches, 2 touch and go landings and then lands at Mojave Spaceport. Complete with tower audio so you can hear the pilots! With the return of White Knight 2, there will be for a brief time a total of 4 rocket launching planes at MHV, Northrop’s Stargazer, Stratolaunch’s Roc, Virgin Galactic’s White Knight 2, and Virgin Orbit’s Cosmic Girl. If you like this video consider supporting me on Patreon for behind the scenes content, downloads, and more. https://www.patreon.com/jackbeyer

** Progress on construction of the Ariane 6 launch complex:   Ariane 6 launch complex at Europe’s Spaceport – ESA

Europe’s Spaceport in Kourou, French Guiana is gearing up for the arrival of Ariane 6, Europe’s next-generation launch vehicle. This aerial view taken in January 2020 shows the main elements of the new launch complex.

The 8200 tonne 90 metre-high mobile gantry will house Ariane 6 before launch. First in July then again in December 2019, the gantry was rolled along its rails to its prelaunch position over the launch pad. Platforms inside the gantry will allow engineers access to the rocket for integration and maintenance. The mobile gantry is retracted before launch.

Ariane 6 launch complex under construction at the Arianespace spaceport in Kourou, French Guiana. Credits: ESA

** Update on Firefly Aerospace from CEO Tom Markusic: A Conversation with Dr. Tom Markusic, CEO, Firefly Aerospace – SatMagazine

Firefly is currently completing qualification of the Alpha first stage, our final milestone before the flight vehicle will be prepared for launch. We are looking forward to sharing progress updates as we continue the qualification process, including video of the full mission duty of the Alpha first stage, which starts 2020 on the test stand undergoing final checkouts before hotfire testing begins. Our Vandenberg team is making excellent progress on the launch site and we will be sharing updates as they move into wet dress rehearsals at the launch facility. The first Alpha launch will take place in 2020 from SLC-2W at VAFB.

** Skyrora demos a rocket engine that burns a high-grade fuel made from waste plastics

The fuel called “Ecosene” provides a greener alternative to kerosene. Ecosene produces up to 45% less greenhouse emissions than normal kerosene. The fuel goes through a two step process which transforms the previously landfill waste in to useable fuel to help place earth observation satellites in to orbit to monitor the United Nations sustainability development goals.

** Update on PLD Space of Spain: PLD Space books first suborbital flight, nears resolution of engine setback – SpaceNews.com

Spanish launch startup PLD Space says [it has] secured a second customer for the maiden flight of its Miura 1 reusable suborbital rocket while tackling development issues that prevented the mission from occurring last year.

Pablo Gallego Sanmiguel, PLD Space’s senior vice president of sales and customers, said Embry-Riddle Aeronautical University in Florida will fly four student- and faculty-built experiments on Muira 1. Those payloads take the remaining commercial space on the mission, which will also fly two microgravity experiments for the Bremen, Germany-based Center of Applied Space Technology and Microgravity, also known as ZARM. Half the rocket’s payload space will carry sensors to study its first flight. 

PLD Space planned to launch Miura 1 in 2019, but delayed the rocket’s debut after a “series of test firing anomalies” during engine development, Gallego Sanmiguel said by email. 

** Mid-flight refueling of a spaceplane via another spaceplane to get the first one to orbit: Suborbital refueling: a path not taken – The Space Review

** An overview of options for getting your smallsat into orbit: Rocket Launch Trends Roaring into the 2020s – Planet.com

It’s never been easier to launch satellites into space, and things are only getting better for satellite operators. A multitude of launch vehicles and orbits are available to satellite missions ranging from Kickstarter-funded garage efforts to serious commercial endeavours. Today, we’re recapping some of the most important launch trends of the last decade and reflecting on how they’ll evolve in the 2020s.

A discussion of higher priced direct versus the lower priced indirect route to orbit : Rocket Lab points out that not all rideshare rocket launches are created equal | TechCrunch

** The International Space Elevator Consortium (ISEC) posts the latest developments and news on space elevators: February 2020 Edition of the ISEC Newsletter

See also this report presented at the IAC 2019 last fall about using space elevators as the key nodes in an interplanetary transportation network: Today’s Space Elevator: Space Elevator Matures into the Galactic Harbour, Peter Swan, Michael Fitzgerald – ISEC (pdf)

The purposes of Earth’s Space Elevators are to 1) deliver cargo to the Enterprises assembling along the geosynchronous belt near the Space Elevator’s GEO Regions; and 2) support interplanetary flights from the APEX Regions; to the Moon, to Mars, and elsewhere.

Since the interplanetary flights from the Apex will use the latent ΔV, (derived from Earth’s rotation – transformed into radial speed at departure from the Apex); Space Elevators are established around the Solar System as part of the Galactic Harbour transportation network. Elevators operate near the Moon, on Mars, on key asteroids within the asteroids belt and elsewhere. We see immense cargo craft moving from Elevator to Elevator bringing supplies and equipment; and returning with raw materials for processing in one of the several GEO regions and later to Earth. This is the third dimension of trade, commerce, transportation, and humankind.

** SpaceX:

** NASA awards contract to SpaceX for launch of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission in December 2022: NASA Awards Launch Services Contract for Earth Science Mission | NASA

NASA has selected SpaceX of Hawthorne, California, to provide launch services for the agency’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission.

The total cost for NASA to launch PACE is approximately $80.4 million, which includes the launch service and other mission related costs. The PACE mission currently is targeted to launch in December 2022 on a Falcon 9 Full Thrust rocket from Cape Canaveral Air Force Station in Florida.

The PACE mission represents the nation’s next great investment in understanding and protecting our home planet. The mission will provide global ocean color, cloud, and aerosol data that will provide unprecedented insights into oceanographic and atmospheric responses to Earth’s changing climate. PACE will help scientists investigate the diversity of organisms fueling marine food webs and the U.S. economy, and deliver advanced data products to reduce uncertainties in global climate models and improve our interdisciplinary understanding of the Earth system.

**** SpaceX releases Rideshare Payload Users Guide (pdf). The Smallsat Rideshare Program provides payload space for small satellites on Falcon 9 launches. The a primary payload, typically a batch of the company’s Starlink satellites.

The prices are exceptionally low for smallsats, e.g. $1M for a 200kg satellite to sun synchronous polar orbit. The Rideshare website provides an interactive guide to estimating the cost for a smallsat mission. Reservations can also be made online.

The goal is to provide routine access to space.The launch opportunities will take place at regular intervals:

SSO missions approximately every 4 months.

So if a payload is delayed, it can ride on a subsequent launch.

If your payload is delayed, apply 100% of monies paid toward cost of rebooking on a future mission, subject to a 10% rebooking fee.

Artist’s rendering of the moment of fairing separation for a Rideshare Falcon 9 mission. The smallsat deployment structure has several smallsats attached. Credits: SpaceX

**** Total number of Falcon 9 launches will surpass 100 by end of this year if there are no major failures: SpaceX’s workhorse Falcon 9 rocket expected to reach major launch milestone in 2020 – Teslarati

Hours after SpaceX launched its 240th new Starlink satellite into orbit, Elon Musk took to Twitter to cryptically reveal that the company’s workhorse Falcon 9 rocket could “reach triple digits this year” if everything goes according to plan.

Designed and built by SpaceX in the late 2000s, the Falcon 9 rocket launched for the first time in June 2010. Developed for the unfathomably low price of $300 million from clean-sheet design to first orbital launch, the original single-core Falcon 9 rocket – known as V1.0 – was about 48m (160 ft) tall, weighed 333 metric tons (735,000 lb) fully fueled, and was capable of launching almost 10.5 metric tons (23,000 lb) into low Earth orbit (LEO). Famously, when provided with Falcon 9’s basic specifications and characteristics, an independent NASA study estimated that the rocket’s development would have cost the agency anywhere from $1.7 billion to $4 billion to design and build.

**** Falcon 9 booster for the latest Starlink mission returns from the sea. The booster landed harder than usual but the legs absorbed the impact just fine.

Here is a view of the booster’s return from USLaunchReport:

B1051 is still in excellent shape. The landing legs did their job. Appears to be approx. 5ft lower than normal. Incredible when you think of the force the landing legs must absorb.

**** Starship

****** An overview of the Starship/Super Heavy Booster project presented by Gerald Black at the Mars Society conference held last October:

****** First SN-1 Starship test flight could happen in a couple of months: SpaceX requests permission to fly new Starship rocket on 12-mile-high test flight – The Verge

SpaceX is already planning the next big test flight of its future Starship rocket out of southern Texas. As early as mid-March, the company is hoping to fly a test version of the vehicle to a super high altitude and then land it upright on solid ground, proving the rocket can be reused and potentially touch down on other worlds.

The upcoming test is detailed in new paperwork SpaceX filed with the Federal Communications Commission, which provides licensing to aerospace companies that are hoping to fly their vehicles to space. Specifically, the FCC allocates which radio frequencies companies can use to communicate with their vehicles during flight.

SpaceX notes in its filing that it wants special authority to communicate with its Starship rocket while the vehicle flies to an altitude of 12.4 miles or 20 kilometers — nearly halfway to the edge of space. Starship would take off from SpaceX’s test facility at Boca Chica, Texas, and the company would attempt to land the vehicle near the launch site using the rocket’s Raptor engines. SpaceX also plans to send data of the vehicle’s trajectory to both the Air Force and NASA.

****** To achieve a SN-1 flight so soon, activities are ramping up at Boca Chica Beach. New tanks are being assembled, the stainless steel bands for the main fuselage of the SN-1 Starship are being produced and stacked, several new structures have gone up to protect manufacturing from the elements, the last of the private residents near the site are being bought out to make it less hazardous to carry out tests and launch activities, and new workers are being hired.

See also: SpaceX ramps Starship hiring as Elon Musk talks Texas rocket factory’s “awesome” progress – Teslarati

Here are a series of videos via NASASpaceflight YouTube showing the feverish activities of the past week:

****** SpaceX Boca Chica – Test Tank 2 Aftermath – Jan.29.2020

Following what is understood to be a successful test of Starship Test Tank 2, the remains of the tank await removal from the Boca Chica launch site. Video and Photos from Mary (@bocachicagal) for NSF.

****** SpaceX Boca Chica – Removing the remains of Starship Test Tank 2 – Jan.29.2020

SpaceX engineers entered the launch pad area to begin removing the remains of the Starship Test Tank (2). Meanwhile, new SN1 rings and new construction continues to be on show in Boca Chica. Video and Photos from Mary (@bocachicagal) for NSF.

****** SpaceX Boca Chica – New Starship Header Tank – Launch Site Repairs – Jan.29.2020

While the dismantling of the Test Tank takes place, along with launch mount repairs, a new Starship SN1 Header Tank was spotted in the assembly building. Video and Photos from Mary (@bocachicagal) for NSF.

****** SpaceX Boca Chica – Launch Site cleared for SN1 – Starship Fins Appearance – Jan.31.2020

ork on clearing the Boca Chica Starship launch pad is continuing with Test Tank 2 dismantling – including a surprise appearance from two Starship Fins (likely Mk1) – clearing the way for SN1. Video and Photos from Mary (@bocachicagal) for NSF. Edited by Jack Beyer (@thejackbeyer).

****** SpaceX Boca Chica – Starship SN1 Ring Stacking – Huge Windbreak Construction – Feb.1.2020

Signs Starship SN1 is undergoing ring stacking observed at Boca Chica as SpaceX build a very tall assembly/windbreak facility and clear the launch pad of test hardware. Video and Photos from Mary (@bocachicagal) for NSF, with additional photos from NSF’s Nomadd.

****** SpaceX Boca Chica – Starship SN1 Rings Mass Production – Feb.3.2020

A large number of monolithic steel rings are being produced at SpaceX’s Boca Chica facility, ready to become part of the stack for the SN1 Starship. Video and Photos from Mary (@bocachicagal) for NSF.

****** SpaceX Boca Chica – Starship SN1 Welding – Launch Site Preps – Feb.4.2020

With Starship SN1 literally months away from a potential launch, SpaceX workers have been busy welding steel rings together and preparing the launch site for her arrival. Video and Photos from Mary (@bocachicagal) for NSF.

== Amazon Ad ==

The Case for Space:
How the Revolution in Spaceflight Opens Up
a Future of Limitless Possibility

Space transport roundup – June.29.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** SpaceX successfully launched a fourth batch of 60 Starlink satellites today from Cape Canaveral. The first stage booster landed safely and one of the two nosecone fairings was caught in a net on a ship as well. The other fairing had a soft landing near a second ship and will probably be recovered for possible reuse.

See also

More SpaceX items below.

** Spinlaunch and its centrifugal catapult launch system are described in the most detailed public article released so far for the secretive company: Inside SpinLaunch, the Space Industry’s Best Kept Secret | WIRED

In SpinLaunch’s design, once a rocket is spinning at launch speeds, an exit port in the centrifuge will open for a fraction of a second, sending the rocket shooting out. According to patents filed by the company, a counterbalance spinning opposite the rocket gets released at the same time, preventing the tether from becoming unbalanced and vibrating into oblivion. The rocket coasts for about a minute and ignites its engines at roughly 200,000 feet. At that altitude, there’s hardly any atmosphere pushing against the rocket, so a minute-long engine burn is about all it takes to boost the vehicle to orbital speeds of around 17,500 miles an hour. Another burn, this one lasting just ten seconds, helps the rocket slide into orbit around Earth.

Or so [Spinlaunch founder and chief Jonathan] Yaney assures me. When I visited the company, the prototype centrifuge was still in pieces and Yaney wouldn’t show me any videos of it in action. Instead, he insisted the math of SpinLaunch engineers was solid. Major investors—including Airbus Ventures, Kleiner Perkins, and GV (part of Alphabet)—have given their blessing too, pumping $80 million into the company. And last year, the US Department of Defense awarded SpinLaunch a contract to help develop its centrifuge. Still, the scant public evidence that any of it works leaves much to the imagination.

** Blue Origin to use Air Force facility to test BE-7 lunar lander engine. Blue will fund major improvements to the site located on Edwards Air Force Base in California.

The Air Force Research Laboratory and Blue Origin are developing a new test facility for the Blue Origin BE-7 lunar lander engine at the AFRL rocket lab here.

Capital improvements, funded by Blue Origin, will allow BE-7 testing in a simulated space-like environment. Planned work includes adding liquid hydrogen and liquid oxygen propellant capabilities, along with other facility upgrades.

AFRL and Blue Origin signed a 15-year Cooperative Research and Development Agreement Dec. 11, 2019 to develop a test facility for the Blue Origin BE-7 Lunar Lander Engine here. The CRADA was signed by Dr. Shawn Phillips, chief of the Rocket Propulsion Division, and Bob Smith, CEO of Blue Origin.

The BE-7 engine is a new, high performance 10,000 pound-thrust dual-expander cycle engine for in-space applications, including Blue Origin’s Blue Moon lunar lander. The new AFRL test capabilities will support various development, qualification, and production acceptance tests of the BE-7 engine under future Commercial Test Agreements, also to be funded by Blue Origin.

“The Altitude facility at Edwards Air Force Base, California, does tactical scale research on next generation rocket motor and engine components, propellant formulations, and subsystems; and high vacuum research on satellite components, subsystems, and systems. Research testing includes solid rocket motor testing at simulated altitudes up to 120,000 feet. The complex has been used for space simulation to validate thrust vector control systems, baseline a standard for solid rocket motor propellants, research extendable nozzle cones, and systems, and research space qualified ignition systems.” Credits: AFRL

** Rocket Lab set to launch Birds of a Feather mission with NRO smallsat during window that opens Friday, Jan.31st:

Rocket Lab’s 11th Electron flight – Birds of a Feather – will launch a dedicated mission for the United States National Reconnaissance Office (NRO). The launch window is scheduled to open on 31 January NZDT and the mission will lift off from Rocket Lab Launch Complex 1.

The NRO competitively awarded the contract under the Rapid Acquisition of a Small Rocket (RASR) contract vehicle. RASR allows the NRO to explore new launch opportunities that can provide a streamlined, commercial approach for getting small satellites into space.

See also

** An update on Exodus Space Corp and the Astroclipper orbital spaceplane:

AstroClipper first stage detaching from the upper stage. Credits: Exodus Aerospace

Space.com:

Startup Exodus Space Corp. plans to build a space plane to ferry cargo around Earth. Eventually, that cargo could include people, if the spacecraft is deemed safe enough.

The spaceship — called AstroClipper — will take off from a runaway, make a flight into space and then land again, plane-style. A heft booster at the space plane’s back end will help it get into orbit by giving AstroClipper the speed it requires to break out of Earth’s atmosphere.

Exodus is new and still raising money, but its team includes deep experience across the space industry. Principals at the company have worked at SpaceX, Lockheed Martin and NASA, among others. 

AstroClipper - Exodus Space
The flight sequence for the Exodus Space AstroClipper reusable launch system. Credits: Exodus Space

** A NASA KSC video highlights the Commercial Crew program:

NASA and Commercial Crew Program partners Boeing and SpaceX are preparing to launch astronauts from Florida’s Space Coast.

** Misc. rocket items:

** SpaceX:

**** Crew Dragon abort test flight accomplished all the primary mission goals according to results released so far: SpaceX releases preliminary results from Crew Dragon abort test – Spaceflight Now

Data from the Jan. 19 in-flight launch escape demonstration of SpaceX’s Crew Dragon spacecraft indicate the performance of the capsule’s SuperDraco abort engines was “flawless” as the thrusters boosted the ship away from the top of a Falcon 9 rocket with a peak acceleration of about 3.3Gs, officials said Thursday.

The Jan. 19 test demonstrated the Crew Dragon’s ability to safely carry astronauts away from a launch emergency, such as a rocket failure, and return the crew to a parachute-assisted splashdown in the Atlantic Ocean.

**** Starship

****** SpaceX conducted multiple pressure tests on propellant tanks in the past several days at the Boca Chica Beach facility. These included tests on a prototype nosecone tank and on a second large main propulsion tank. (The nosecone header tank is used to keep the center of mass of the Starship positioned correctly as propellants are fed into the engines.) The tanks were each tested to the point of destruction so as to determine the margin of safety above their planned operating pressures. The latest large tank test used liquid nitrogen, whose cryogenic temperature strengthens the stainless steel structure. The tank did not burst until the pressure reached 8.5 bar, which Elon Musk said was the target level. The highest operating pressure will be 6 bar.

****** SpaceX Boca Chica – Starship Test Tank 2 Destructive Cryo Test – Jan.29.2020 – NASASpaceflight.com

The second Starship test tank is tested to overpressure (8.5 Bar) at SpaceX’s Boca Chica launch site. Video and Photos from Mary (@bocachicagal) for NSF. Edited by Jack Beyer (@thejackbeyer)

****** SpaceX Boca Chica – Starship Nosecone Heads to Launch Site – Bulkhead Flip – Jan.23.2020 – NASASpaceflight.com

Ops are ramping up at SpaceX Boca Chica as the Test Tank bulkhead was flipped and the Starship Nosecone/Header Tank was transported to the launch site for its own proofing test. Video and Photos from Mary (@bocachicagal) for NSF.

****** SpaceX Boca Chica – Starship Header Tank Pressurization Test – Jan.25.2020 – NASASpaceflight.com

SpaceX conducted a pressurization test of a Starship header tank on Jan. 24 at their Boca Chica launch facility. NSF’s BocaChicaGal (Mary) filmed the test for several hours. The footage has been compiled into a timelapse of the test.

****** A Starship lands on the Moon in this nicely made animation at Hazegrayart – YouTube:

=== Amazon Ad ===

Large and Dangerous Rocket Ships:
The History of High-power Rocketry’s Ascent to the Edges of Outer Space