The Space Show this week – Oct.16.2017

The guests and topics of discussion on The Space Show this week:

1. Monday, Oct. 16, 2017; 2-3:30 pm PDT (4-5:30 pm CDT, 5-6:30 pm EDT); We welcome back DENNIS WINGO. The theme for the program is that for space, risk is a four letter word.

2. Tuesday, Oct. 17, 2017; 7-8:30 pm PDT (9-10:30 pm CDT, 10-11:30 pm EDT) : We welcome back NICK NIELSEN to the show. Nick will be talking about settling the Moon, cultural history and issues. Check out his 2017 Starship Congress talk as I have posted the URL for it on the blog.

3. Wednesday, Oct. 18, 2017 : Hotel Mars with John Batchelor, Dr. David Livingston. See upcoming show menu on the website for details. Note that this is a pre-recorded session.

4. Friday, Oct. 20, 2017: 9:30-11 am PDT, (12:30-2 pm EDT; 11:30 am-1 pm CDT): We welcome back DR. HAYM BENAROYA. Haym will be discussing lunar development and more.

5. Sunday, Oct. 22, 2017: 12-1:30 pm PDT (3-4:30 pm EDT, 2-3:30 5 pm CDT): We welcome back KERI KRUKA regarding the upcoming new Raw Science Film Festival to be held in early January in Santa Barbara, CA.

See also:
* The Space Show on Vimeo – webinar videos
* The Space Show’s Blog – summaries of interviews.
* The Space Show Classroom Blog – tutorial programs

The Space Show is a project of the One Giant Leap Foundation.

The Space Show - David Livingston
David Livingston

Hubble: Source of gravitational wave observed in visible light for the first time

An announcement from Hubble Space Telescope observatory:

Hubble observes source of gravitational waves for the first time

On 17 August 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo Interferometer both detected gravitational waves from the collision between two neutron stars. Within 12 hours observatories had identified the source of the event within the lenticular galaxy NGC 4993, shown in this image gathered with the NASA/ESA Hubble Space Telescope. The associated stellar flare, a kilonova, is clearly visible in the Hubble observations. This is the first time the optical counterpart of a gravitational wave event was observed. Hubble observed the kilonova gradually fading over the course of six days, as shown in these observations taken in between 22 and 28 August (insets). [Larger images]
The NASA/ESA Hubble Space Telescope has observed for the first time the source of a gravitational wave, created by the merger of two neutron stars. This merger created a kilonova — an object predicted by theory decades ago — that ejects heavy elements such as gold and platinum into space. This event also provides the strongest evidence yet that short duration gamma-ray bursts are caused by mergers of neutron stars. This discovery is the first glimpse of multi-messenger astronomy, bringing together both gravitational waves and electromagnetic radiation.

On 17 August 2017 the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo Interferometer both alerted astronomical observers all over the globe about the detection of a gravitational wave event named GW170817 [1]. About two seconds after the detection of the gravitational wave, ESA’s INTEGRAL telescope and NASA’s Fermi Gamma-ray Space Telescope observed a short gamma-ray burst in the same direction.

In the night following the initial discovery, a fleet of telescopes started their hunt to locate the source of the event. Astronomers found it in the lenticular galaxy NGC 4993, about 130 million light-years away. A point of light was shining where nothing was visible before and this set off one of the largest multi-telescope observing campaigns ever — among these telescopes was the NASA/ESA Hubble Space Telescope [2].

This plot shows how the spectrum and brightness of the kilonova seen in the galaxy NGC 4993 changed over 12 days following the detection of gravitational waves on 17 August 2017. In blue light the object faded rapidly, but at longer wavelengths, in the near infrared part of the spectrum, it brightened a little and then faded much more slowly. As a result this object changed colour from very blue to very red during this period. Each line is labeled with the number of days since the explosion and the horizontal axis is the colour of the light, from ultraviolet to near-infrared. The colours of the lines indicate the overall colour of the object at the different times. [Larger versions]
Several different teams of scientists used Hubble over the two weeks following the gravitational wave event alert to observe NGC 4993. Using Hubble’s high-resolution imaging capabilities they managed to get the first observational proof for a kilonova, the visible counterpart of the merging of two extremely dense objects — most likely two neutron stars [3]. Such mergers were first suggested more than 30 years ago but this marks the first firm observation of such an event [4]. The distance to the merger makes the source both the closest gravitational wave event detected so far and also one of the closest gamma-ray burst sources ever seen.

Once I saw that there had been a trigger from LIGO and Virgo at the same time as a gamma-ray burst I was blown away,” recalls Andrew Levan of the University of Warwick, who led the Hubble team that obtained the first observations. “When I realised that it looked like neutron stars were involved, I was even more amazed. We’ve been waiting a long time for an opportunity like this!

Hubble captured images of the galaxy in visible and infrared light, witnessing a new bright object within NGC 4993 that was brighter than a nova but fainter than a supernova. The images showed that the object faded noticeably over the six days of the Hubble observations. Using Hubble’s spectroscopic capabilities the teams also found indications of material being ejected by the kilonova as fast as one-fifth of the speed of light.

It was surprising just how closely the behaviour of the kilonova matched the predictions,” said Nial Tanvir, professor at the University of Leicester and leader of another Hubble observing team. “It looked nothing like known supernovae, which this object could have been, and so confidence was soon very high that this was the real deal.”

Connecting kilonovae and short gamma-ray bursts to neutron star mergers has so far been difficult, but the multitude of detailed observations following the detection of the gravitational wave event GW170817 has now finally verified these connections.

The spectrum of the kilonova looked exactly like how theoretical physicists had predicted the outcome of the merger of two neutron stars would appear,” says Levan. “It ties this object to the gravitational wave source beyond all reasonable doubt.

The infrared spectra taken with Hubble also showed several broad bumps and wiggles that signal the formation of some of the heaviest elements in nature. These observations may help solve another long-standing question in astronomy: the origin of heavy chemical elements, like gold and platinum [5]. In the merger of two neutron stars, the conditions appear just right for their production.

The implications of these observations are immense. As Tanvir explains:

This discovery has opened up a new approach to astronomical research, where we combine information from both electromagnetic light and from gravitational waves. We call this multi-messenger astronomy — but until now it has just been a dream!

Levan concludes:

Now, astronomers won’t just look at the light from an object, as we’ve done for hundreds of years, but also listen to it. Gravitational waves provide us with complementary information from objects which are very hard to study using only electromagnetic waves. So pairing gravitational waves with electromagnetic radiation will help astronomers understand some of the most extreme events in the Universe.

Notes
[1] The ripples in spacetime known as gravitational waves are created by moving masses, but only the most intense waves, created by rapid speed changes of very massive objects, can be detected by the current generation of detectors. Gravitational waves detectable from Earth are generated by collisions of massive objects, such as when two black holes or neutron stars merge.

[2] Next to Hubble, ESO’s Very Large Telescope, ESO’s New Technology Telescope, ESO’s VLT Survey Telescope, the MPG/ESO 2.2-metre telescope, the Atacama Large Millimeter/submillimeter Array, the Visible and Infrared Survey Telescope for Astronomy, the Rapid Eye Mount (REM) telescope, the Swope Telescope, the LCO .4-meter telescope, the American DECcam, and the Pan-STAARS survey all helped to identify and observe the event and its after-effects over a wide range of wavelengths.

[3] A neutron star forms when the core of a massive star (above eight times the mass of the Sun) collapses. This process is so violent that it crushes protons and electrons together to form subatomic particles called neutrons. They are supported against further collapse only by neutron degeneracy pressure. This makes neutron stars the smallest and densest stars known.

[4] In 2013 astronomers published results on the evidence for a kilonova, associated with a short gamma-ray burst. The observations in 2013 were far less conclusive, and hence more controversial, than the new results.

[5] These observations pin down the formation of elements heavier than iron through nuclear reactions within high-density stellar objects, known as r-process nucleosynthesis, something which was only theorised before.

====

Videos: TMRO Orbit 10.38 – LUNARES Moon and Mars simulated living

The latest TMRO.tv live program is now available in the archive: LUNARES Moon and Mars simulated living – Orbit 10.38 – TMRO

We talk with the crew running the ICAres-1 mission aboard the LUNARES Mobile Research Station. We will cover what the simulation is doing, how the accomplish it and why it is important for teh future of humans living and working in space.

Space news topics:

  • Haumea, the egg
  • Planet 9 Evidence Mounts!

Last week’s launches:

  • Long March 2D Returns to Flight with Venezuelan Satellite
  • SpaceX Launches 3rd batch of IridiumNEXT satellites
  • H2-A Rocket launches final Japanese GPS Satellite
  • SpaceX Launches ComSat on Reused Rocket
  • Rockot launches Sentinal 5P for ESA
  • Soyuz launches Progress MS-07

TMRO is viewer supported:

TMRO:Space is a crowd funded show. If you like this episode consider contributing to help us to continue to improve. Head over to http://www.patreon.com/tmro for information plus our all new goals and reward levels 

==

The recent TMRO short reports:

====

Project Karman: UCB undergrad team aims to launch rocket past 100 kilometers

Project Karman is an undergraduate student led initiative at UC Berkeley to design, build, and launch a rocket that exceeds 100 kilomters in altitude. They currently have a crowdfunding campaign underway, which has raised $13,725 so far towards a goal of $25,000 with 16 days left:  UC Berkeley | PROJECT KARMAN: 1 Launch, 10 Months, 100 Kilometers to Space!

The group is also challenging students at other schools to compete with them to reach the Karman Line: PROJECT KARMAN goes global

Tonight, we officially challenged colleges across the globe to join us in the Intercollegiate Space Race of the 21st Century, competing to see who can truly be the first college team to reach space with its own rocket. Through the UN-backed World Space Week Association, we were able to broadcast this challenge internationally! See their Facebook post here: https://www.facebook.com/pg/WorldSpaceWeek/posts/?ref=page_internal. To see more details regarding the formal rules of the competition, visit berkeleyse.org/spacerace.

A video about Project Karman:

And here is a profile of one of the students – Autumn Kleinman – working on the project: Rocket Ambitions: San Clemente Native Works on Suborbital Craft with UC Berkeley club | San Clemente Times.

The group estimates the final cost of the Eureka-1 rocket project to be about $250k. They hope to reach this figure with additional crowd-funding, grants, and sponsorships.

The goal is for Eureka-1 to be reusable and to fly many times:

While the technical know-how to send payloads to space has existed for over 60 years, the requisite technology has remained incredibly expensive, failure-prone, and dangerous to use.

Recent advances in materials science coupled with proprietary cost-saving technologies have allowed Space Enterprise at Berkeley to entirely eliminate the turbo pump, the single most expensive and delicate element of modern rocket engines.

This innovation has allowed us to reduce the typical $2.8 million price tag of a suborbital launch to less than $150,000. In addition, in-development recovery systems will allow for a fly-land-fly turnaround for Eureka-1. With full implementation of this system, Eureka could fly multiple times per week, with only a short refurbishment and refueling period between launches. This would reduce total launch cost to less than $10,000.

A couple of other videos from Project Karman: