The Space Show this week – Jan.18.16

The guests and topics of discussion on The Space Show this week:

1. Monday, January 18, 2016: 2-3:30 PM PST (5-6:30 PM EST; 4-5:30 PM CST): We welcome DR. GEOFFREY LANDIS to discuss Venus, Mars, and more. Find out more @ www.geoffreylandis.com.

2. Tuesday, Jan. 19 , 2016,7-8:30 PM PST (10-11:30 PM EST, 9-10:30 PM CST): This Space Show program focuses on your suggestions for topics and guests for 2016. We want to know what you want to hear about in the coming year.

3. Friday, January 22, 2016, 2016; 9:30 -11 AM PST (12:30-2 PM EST; 11:30-1 PM CST) We welcome back DR. WILLIAM (BILL) FARRAND for Mars rover updates and more.

4. Sunday, Jan. 24, 2016: 12-1:30 PM PST (3-4:30 PM EST, 2-3:30 PM CST): We welcome back JOHN STRICKLAND for more on his commercial space work, mission ideas, technology, propulsion and exciting possibilities.

See also:

/– The Space Show on Vimeo – webinar videos
/– The Space Show’s Blog – summaries of interviews.
/– The Space Show Classroom Blog – tutorial programs

The Space Show is a project of the One Giant Leap Foundation.

ESO: Public invited to watch the search for a planet around Proxima Centauri

ESO opens a new outreach program that allows the general public to follow closely the hunt for an earth-like exoplanet around the nearest star Proxima Centauri:

Follow a Live Planet Hunt!

A unique outreach campaign has been launched that will allow the general public to follow scientists from around the globe as they search for an Earth-like exoplanet around the closest star to us, Proxima Centauri. The observing campaign will run from January to April 2016 and will be accompanied by blog posts and social media updates. No one knows what the outcome will be. In the months following the observations, the scientists will analyse the data and submit the results to a peer-reviewed journal.

Pale Red Dot is an international search for an Earth-like exoplanet around the closest star to us, Proxima Centauri. It will use HARPS, attached to ESO’s 3.6-metre telescope at La Silla Observatory, as well as the Las Cumbres Observatory Global Telescope Network (LCOGT) and the Burst Optical Observer and Transient Exploring System (BOOTES).  It will be one of the few outreach campaigns allowing the general public to witness the scientific process of data acquisition in modern observatories. The public will see how teams of astronomers with different specialities work together to collect, analyse  and interpret data, which may or may not be able to confirm the presence of an Earth-like planet orbiting our nearest neighbour . The outreach campaign consists of blog posts and social media updates on the Pale Red Dot Twitter account and using the hashtag #PaleRedDot. For more information visit the Pale Red Dot website: http://www.palereddot.org
Pale Red Dot is an international search for an Earth-like exoplanet around the closest star to us, Proxima Centauri. It will use HARPS, attached to ESO’s 3.6-metre telescope at La Silla Observatory, as well as the Las Cumbres Observatory Global Telescope Network (LCOGT) and the Burst Optical Observer and Transient Exploring System (BOOTES). It will be one of the few outreach campaigns allowing the general public to witness the scientific process of data acquisition in modern observatories. The public will see how teams of astronomers with different specialities work together to collect, analyse  and interpret data, which may or may not be able to confirm the presence of an Earth-like planet orbiting our nearest neighbour . The outreach campaign consists of blog posts and social media updates on the Pale Red Dot Twitter account and using the hashtag #PaleRedDot. For more information visit the Pale Red Dot website: http://www.palereddot.org

At a distance of just 4.2 light-years from the Sun, and located in the constellation of Centaurus, Proxima Centauri is the closest known star to the Sun. Previous observations have provided tantalising, but weak hints of a small companion orbiting this red dwarf star, but this new campaign will make a more sensitive search for the telltale wobbles in the dwarf star’s orbital motion that might reveal the presence of an Earth-like orbiting planet.

Observations will be made with the High Accuracy Radial velocity Planet Searcher (HARPS), attached to ESO’s 3.6-metre telescope at La Silla Observatory. The HARPS data will be complemented by images from an assortment of robotic telescopes located across the world [1].

The telescopes that comprise the Burst Optical Observer and Transient Exploring System (BOOTES) and the Las Cumbres Observatory Global Telescope Network (LCOGT) will support the search by measuring the brightness of Proxima Centauri every night during the two and a half month long project. These observations will help astronomers determine whether any detected wobbles in the star’s motion are caused by features on its turbulent surface or by an orbiting planet.

Once the data have been collected by the various telescopes, astronomers can start their analysis. In the following months, their research methods and conclusions will be described in a paper submitted to a peer-reviewed scientific journal. When the scientific community has validated the research, the results will be published, concluding a long and substantial programme of scientific research.

Apart from following the scientific observations as they arrive, the Pale Red Dot outreach campaign [2] gives the public the opportunity to see how science is done in modern observatories, and how teams of astronomers with different specialities work together to collect, analyse and interpret data, which may or may not be able to confirm the presence of an Earth-like planet orbiting our nearest neighbour.

We are taking a risk to involve the public before we even know what the observations will be telling us  — we cannot analyse the data and draw conclusions in real time. Once we publish the paper summarising the findings it’s entirely possible that we will have to say that we have not been able to find evidence for the presence of an Earth-like exoplanet around Proxima Centauri. But the fact that we can search for such small objects with such extreme precision is simply mind-boggling,” said Guillem Anglada-Escude, the Project Coordinator.

We want to share the excitement of the search with people and show them how science works behind the scenes, the trial and error process and the continued efforts that are necessary for the discoveries that people normally hear about in the news. By doing so, we hope to encourage more people towards STEM [3] subjects and science in general,” adds Guillem.

The Pale Red Dot outreach campaign will illuminate the often unseen side of planet hunting with background articles and through social media. A bustling array of blog posts on many topics — including planet-hunting techniques, ESO’s European Extremely Large Telescope (E-ELT), and the lives of stars — are planned, written by the astronomers, scientists and engineers from the observatories involved, as well as science writers, observers and other experts in the field.

There will be daily social media updates, briefing the public on how the observations are going and any events taking place at the three observatories involved. To receive updates, people are invited to follow the Pale Red Dot Twitter account and the hashtag #PaleRedDot.

The name of the campaign was inspired by the famous “pale blue dot” image of the Earth, taken in 1990 by Voyager 1 on its way to interstellar space. The phrase was later used by Carl Sagan for his essay, Pale Blue Dot: A Vision of the Human Future in Space. As Proxima Centauri is a red dwarf star, astronomers expect that an exoplanet orbiting it will appear reddish. At the same time, just as Voyager’s image of Earth was a remarkable achievement for humanity, finding an Earth-like exoplanet around the closest star to us would be a another step towards answering humanity’s biggest question: Are we alone?

The Pale Red Dot campaign will begin in earnest on 15 January 2016 with observations commencing just three days later from ESO’s La Silla Observatory, situated at the edge of the Chilean Atacama Desert, and continuing until the first week of April. All of the scientific data obtained as part of the project are expected to become publicly available for all to exploit in late 2016.

Notes

[1] The team of astronomers leading the observations and outreach campaign are: Guillem Anglada-Escude, Gavin Coleman, John Strachan (Queen Mary University of London, UK), James Jenkins  (Universidad de Chile, Chile), Cristina Rodriguez-Lopez, Zaira M. Berdinas, Pedro J. Amado (Instituto de Astrofisica de Andalucia/CSIC), Julien Morin (Universite de Montpellier, France), Mikko Tuomi (Centre for Astrophysics Research/University of Hertfordshire, UK), Yiannis Tsapras (Heidelberg/LCOGT, Astronomisches Rechen-Institut – Heidelberg & LCOGT) and Christopher J. Marvin (University of Goettingen).

[2] The outreach campaign is coordinated by the project team with support from the outreach departments of ESO, Queen Mary University of London, Instituto de Astrofisica de Andalucia/CSIC, Universite de Montpellier, University of Goettingen, Universidad de Chile and Las Cumbres Observatory Global Telescope Network.

[3] STEM, Science, Technology, Engineering and Mathematics.

Video: ‘Space to Ground’ weekly ISS report – Jan.15.16

A NASA report on this week’s activities related to the International Space Station:

Here’s also a report on an EVA carried out by crew members Tim Kopra of NASA and Tim Peake of the European Space Agency today. The main goal was accomplished before the spacewalk was terminated early due to a small amount of water leaking into Kopra’s suit.

ESO: ALMA peers into the hottest of the Hot DOG quasars

The latest ESO (European Southern Observatory) report:

The Turbulent Birth of a Quasar

The most luminous galaxy known in the Universe — the quasar W2246-0526, seen when the Universe was less than 10% of its current age — is so turbulent that it is in the process of ejecting its entire supply of star-forming gas, according to new observations with the Atacama Large Millimeter/submillimeter Array (ALMA).

Artist impression of W2246-0526, a single galaxy glowing in infrared light as intensely as 350 trillion suns. It is so violently turbulent that it may eventually jettison its entire supply of star-forming gas, according to new observations with ALMA.
Artist impression of W2246-0526, a single galaxy glowing in infrared light as intensely as 350 trillion suns. It is so violently turbulent that it may eventually jettison its entire supply of star-forming gas, according to new observations with ALMA.

Quasars are distant galaxies with very active supermassive black holes at their centres that spew out powerful jets of particles and radiation. Most quasars shine brightly, but a tiny fraction [1] of these energetic objects are of an unusual type known as Hot DOGs, or Hot, Dust-Obscured Galaxies, including the galaxy WISE J224607.57-052635.0 [2], the most luminous known galaxy in the Universe.

For the first time, a team of researchers led by Tanio Díaz-Santos of the Universidad Diego Portales in Santiago, Chile, has used the unique capabilities of ALMA [3] to peer inside W2246-0526 and trace the motion of ionised carbon atoms between the galaxy’s stars.

“Large amounts of this interstellar material were found in an extremely turbulent and dynamic state, careening throughout the galaxy at around two million kilometres per hour,” explains lead author Tanio Díaz-Santos.

The astronomers believe that this turbulent behaviour could be linked to the galaxy’s extreme luminosity. W2246-0526 blasts out as much light as roughly 350 trillion Suns. This startling brightness is powered by a disc of gas that is superheated as it spirals in on the supermassive black hole at the galaxy’s core. The light from the blazingly bright accretion disc in the centre of this Hot DOG does not escape directly, it is absorbed by a surrounding thick blanket of dust, which re-emits the energy as infrared light [4].

This powerful infrared radiation has a direct and violent impact on the entire galaxy. The region around the black hole is at least 100 times more luminous than the rest of the galaxy combined, thus releasing intense yet localised radiation in W2246-0526 that is exerting tremendous pressure on the entire galaxy [5].

“We suspected that this galaxy was in a transformative stage of its life because of the enormous amount of infrared energy,” said co-author Peter Eisenhardt, Project Scientist for WISE at NASA’s Jet Propulsion Laboratory in Pasadena, California.

“ALMA has now shown us that the raging furnace in this galaxy is making the pot boil over,” adds Roberto Assef, also from Universidad Diego Portales and leader of the ALMA observations.

If these turbulent conditions continue, the intense infrared radiation would boil away all of the galaxy’s interstellar gas. Models of galaxy evolution based on the new ALMA data indicate that the interstellar gas is already being ejected from the galaxy in all directions.

“If this pattern continues, it is possible that W2246 will eventually mature into a more traditional quasar,” concludes Manuel Aravena, also from the Universidad Diego Portales. “Only ALMA, with its unparalleled resolution, can allow us to see this object in high definition and fathom such an important episode in the life of this galaxy.”

Notes

[1] Only one of every 3000 quasars observed are classified as Hot DOGs.

[2] The full name of this remarkable object is WISE J224607.57-052635.0, it was found by NASA’s Wide-field Infrared Survey Explorer (WISE) spacecraft and the rest of the name gives the precise location of the quasar on the sky.

[3] ALMA is uniquely capable of detecting the faint, millimetre-wavelength light naturally emitted by atomic carbon.

[4] Because of the expansion of the Universe the infrared radiation from W2246-0526 is redshifted to longer millimetre wavelengths — where ALMA is very sensitive — when it is observed from Earth.

[5] In most other quasars this ratio is much more modest. This process of mutual interaction between the central black hole of a galaxy and the rest of its material is known to astronomers as feedback.

More information

This research was presented in a paper “The Strikingly Uniform, Highly Turbulent Interstellar Medium of The Most Luminous Galaxy in the Universe”, by T. Díaz-Santos et al., and will be published in the journal Astrophysical Journal Letters.

The team is composed of T. Díaz-Santos (Universidad Diego Portales, Santiago, Chile), R. J. Assef (Universidad Diego Portales, Santiago, Chile), A. W. Blain (University of Leicester, UK) , C.-W. Tsai (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA) , M. Aravena (Universidad Diego Portales, Santiago, Chile), P. Eisenhardt (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA), J. Wu (University of California Los Angeles, California, USA), D. Stern (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA) and C. Bridge (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA).

To The Stars – International Quarterly #14

Check out the free January 2016 issue of the To The Stars – International Quarterly #14 (pdf). It is provided by the Moon Society and edited by Peter Kokh.

TTSIQ14_Page1Capture

Here is the Table of Contents:

INDEX 2

  • Co-sponsoring Organizations

NEWS SECTION

  • 3-15 Earth Orbit and Mission to Planet Earth
  • 18-17 Space Tourism
  • 18-26 Cislunar Space and the Moon
  • 27-42 Mars
  • 43-46 Asteroids & Comets
  • 47-58 Other Planets & their moons
  • 59-68 Starbound
  • 69 Editor Staff

ARTICLES & ESSAY SECTION

  • pp 70-82 Are We Alone? Many Answers – Peter Kokh
    Understanding Light-Time – Peter Kokh
  • 71 Multi-Star Empires cannot Exist – Peter Kokh
  • 73 Are we alone in this Galaxy? Now? – Peter Kokh
  • 77 Travel faster than Speed of Light? No way, but – Peter Kokh
  • 79 What’s Going on with the International Lunar Decade? – David Dunlop
  • 83 Comments on International. Lunar Decade Report above – Peter Kokh

STUDENTS & TEACHERS 86-91

===

Speaking of the Moon Society, check out the recent article by Moon Society president Ken Murphy on his experiences in organizing Moon Day at the Frontiers of Flight Museum in Dallas every July 20th: Making Moon Day memorable – The Space Review.

Ken was also recently interview on The Space Show: Tue, 12/22/2015 – 00:00 – Kenneth Murphy.

Listen to the audio (mp3).