Category Archives: Astronomy

Space sciences roundup – July.17.2019

A sampling of recent articles, videos, and images from space-related science news items:

Asteroids

** JAXA Hayabusa2 made a successful 2nd sample grab from asteroid Ryugu on July 11th. The :

From SFN:

The robot explorer’s sampling mechanism works by firing a metal bullet into the asteroid once the probe’s sampler horn, which extends from one side of the spacecraft, contacts the surface. The projectile is designed to blast away rock and dust on the asteroid’s surface, then direct the material through the sampler horn into a collection chamber inside the Hayabusa 2 spacecraft.

This image shows debris thrown up from the surface of Ryugu by the bullet.

Hayabusa2 2nd Touchdown
Image of surface immediately after touchdown. Taken with the Optical Navigation Camera – Wide angle (ONC-W1). Credits: Hayabusa-2 project.

A diagram of the touch-and-go surface sampling operation:

Outline of the 2nd touchdown operation.
Outline of the 2nd touchdown operation.

More about the The 2nd touchdown – JAXA Hayabusa2 project

** Help OSIRIS-REx mission map the rugged surface of the Bennu asteroid  NASA Invites Public to Help Asteroid Mission Choose Sample Site | NASA

Citizen scientists assemble! NASA’s OSIRIS-REx mission to the asteroid Bennu needs extra pairs of eyes to help choose its sample collection site on the asteroid – and to look for anything else that might be scientifically interesting.

Bennu surface
“This image shows a view of asteroid Bennu’s surface in a region near the equator. It was taken by the PolyCam camera on NASA’s OSIRIS-REx spacecraft on March 21 from a distance of 2.2 miles (3.5 km). The field of view is 158.5 ft (48.3 m). For scale, the light-colored rock in the upper left corner of the image is 24 ft (7.4 m) wide. Credits: NASA/Goddard/University of Arizona”

The OSIRIS-REx spacecraft has been at Bennu since Dec. 3, 2018, mapping the asteroid in detail, while the mission team searches for a sample collection site that is safe, conducive to sample collection and worthy of closer study. One of the biggest challenges of this effort, which the team discovered after arriving at the asteroid five months ago, is that Bennu has an extremely rocky surface and each boulder presents a danger to the spacecraft’s safety. To expedite the sample selection process, the team is asking citizen scientist volunteers to develop a hazard map by counting boulders.

“For the safety of the spacecraft, the mission team needs a comprehensive catalog of all the boulders near the potential sample collection sites, and I invite members of the public to assist the OSIRIS-REx mission team in accomplishing this essential task,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson.

For this effort, NASA is partnering with CosmoQuest, a project run out of the Planetary Science Institute that supports citizen science initiatives. Volunteers will perform the same tasks that planetary scientists do – measuring Bennu’s boulders and mapping its rocks and craters – through the use of a simple web interface. They will also mark other scientifically interesting features on the asteroid for further investigation.

The boulder mapping work involves a high degree of precision, but it is not difficult. The CosmoQuest mapping app requires a computer with a larger screen and a mouse or trackpad capable of making precise marks. To help volunteers get started, the CosmoQuest team provides an interactive tutorial, as well as additional user assistance through a Discord community and livestreaming sessions on Twitch.

For more info see:

Microgravity Science & Technology R&D

** SpaceX Cargo Dragon to deliver wide range of science and technology experiments to the ISS. Liftoff of mission CRS-18 is currently set for July 21st at 7:35 pm EDT (2335 GMT)

Highlights of Science Launching on SpaceX CRS 18 – July 8, 2019 –

Solar Science

** Sunspot count near zero in June. Faint spots subsequently show signs of start of next cycle: Sunspot update June 2019: Down to zero again, with next cycle making an appearance | Behind The Black

These two visible sunspots for the next solar cycle are very significant. They indicate that we will have an upcoming solar maximum, and are not heading into a grand minimum, when no sunspots are visible for decades.

Their appearance however does not mean that solar minimum is over. On the contrary, the solar cycles typically overlap by one or two years, with new sunspots for the next solar cycle appearing even as the Sun ramps down to minimum and remains relatively inactive for many months.

I cannot deny that I will be disappointed if a grand minimum does not occur. Such an event would have been a wonderful opportunity for solar scientists to get answers to their many questions about the Sun’s solar cycles that today remain unanswered and will likely not be answerable while the Sun follows its behavior of the last three hundred years.

At the same time, if the upcoming solar cycle is weak, as has been predicted by some solar scientists, it will help confirm some theories that try to explain the Sun’s behavior.

ISES Solar Cycle Sunspot Number Progression - NOAA

Check SpaceWeather.com for the daily sunspot count. More solar images and measurements can be found on the Space-for-All page The Sun & Space Weather.

Continue reading Space sciences roundup – July.17.2019

Night sky highlights for July 2019

** NASA JPL posts What’s Up Video: July 2019 | NASA

As NASA marks the 50th anniversary of the Apollo 11 Moon landing, here are five things to know about the Moon that you can share with others: How far away is the Moon? How big is the Moon? What color is the Moon? Why do we always see the same side of the Moon? And what are the dark areas on the Moon?

** The Hubble Space Telescope Science Institute posts “Tonight’s Sky: July 2019”:

In July, find the Scorpius constellation to identify the reddish supergiant Antares, which will lead you to discover a trio of globular star clusters. Keep watching for space-based views of these densely packed, spherical collections of ancient stars, as well as three nebulas: the Swan Nebula, the Lagoon Nebula, and the Trifid Nebula.

** Alyn Wallace posts his program on the July 2019 night sky:

** A preview of the month’s night sky plus a schedule for some space related events: Skywatch: What’s happening in the heavens in July – The Washington Post

====

LEGO Ideas NASA Apollo Saturn V 21309
Outer Space Model Rocket for Kids and Adults, Science Building Kit
(1900 pieces)

Space sciences roundup – June.13.2019

A sampling of recent articles, videos, and images from space-related science news items:

** ESA-led Heracles mission will return samples of the lunar surface to Earth: Landing on the Moon and returning home: Heracles – ESA

The Heracles lander will target a previously unexplored region near the lunar South Pole as an interesting area for researchers. A lander with a rover inside and ascent module on top will land there. Monitored and controlled from the lunar Gateway, the rover will scout the terrain in preparation for the future arrival of astronauts, and collect samples. The ascent module will take off from the surface and fly to the Gateway with the samples taken by the rover.

When the ascent module carrying the sample container arrives, the Gateway’s robotic arm will capture it and extract the sample container. The sample container will be received by the astronauts via a science airlock and pack it in NASA’s Orion spacecraft that is powered by the European Service Module. Orion will fly to Earth with astronauts and land with the Heracles lunar samples for analysis in the best laboratories on Earth.

** Massive metal deposit may underlie the Moon’s South Pole–Aitken basin: Mass Anomaly Detected Under the Moon’s Largest Crater – Baylor University

A mysterious large mass of material has been discovered beneath the largest crater in our solar system — the Moon’s South Pole-Aitken basin — and may contain metal from an asteroid that crashed into the Moon and formed the crater, according to a Baylor University study.

“Imagine taking a pile of metal five times larger than the Big Island of Hawaii and burying it underground. That’s roughly how much unexpected mass we detected,” said lead author Peter B. James, Ph.D., assistant professor of planetary geophysics in Baylor’s College of Arts & Sciences.

The crater itself is oval-shaped, as wide as 2,000 kilometers — roughly the distance between Waco, Texas, and Washington, D.C. — and several miles deep. Despite its size, it cannot be seen from Earth because it is on the far side of the Moon.

Dennis Wingo has long claimed that asteroid impacts on the Moon have enriched it with vast quantities of valuable metals.

Many other space scientists have claimed that the materials of such bodies were vaporized on impact and thinly spread over the Moon and thus not accessible by standard mining techniques.

** The Psyche mission will study a metallic asteroid up close :  NASA’s Psyche Mission Has a Metal World in Its Sights – NASA

Designed to explore a metal asteroid that could be the heart of a planet, the Psyche mission is readying for a 2022 launch. After extensive review, NASA Headquarters in Washington has approved the mission to begin the final design and fabrication phase, otherwise known as Phase C. This is when the Psyche team finalizes the system design, develops detailed plans and procedures for the spacecraft and science mission, and completes both assembly and testing of the spacecraft and its subsystems.

“The Psyche team is not only elated that we have the go-ahead for Phase C, more importantly we are ready,” said Principal Investigator Lindy Elkins-Tanton of Arizona State University in Tempe. “With the transition into this new mission phase, we are one big step closer to uncovering the secrets of Psyche, a giant mysterious metallic asteroid, and that means the world to us.”

The mission still has three more phases to clear. Phase D, which will begin sometime in early 2021, includes final spacecraft assembly and testing, along with the August 2022 launch. Phase E, which begins soon after Psyche hits the vacuum of space, covers the mission’s deep-space operations and science collection. Finally, Phase F occurs after the mission has completed its science operations; it includes both decommissioning the spacecraft and archiving engineering and science data.

The Psyche spacecraft will arrive at Asteroid Psyche on Jan. 31, 2026, after flying by Mars in 2023.

The mission will also test laser communications with deep space probes:

Deep Space Optical Communications (DSOC)
Diagram of tests of the Deep Space Optical Communications (DSOC) package on the Psyche spacecraft.

** A review of the Hayabusa2 mission to the Ryugu asteroid, since its arrival in June of 2018: Treasure Hunting With Hayabusa2 – The Planetary Society

So far, multiple devices have been placed on the surface and an explosive was set off as well. A prime goal of the mission is to return a surface sample to Earth. One sampling was made in February.

Hayabusa2 Touchdown
Sampling Ryugu: “The moment that Hayabusa2 contacted asteroid Ryugu, it fired a bullet through its sampler horn (center) to knock material loose from the surface and then immediately fired its thrusters to ascend. This photo sequence, taken from an altitude of up to about 15 meters, demonstrated the success of the bullet; dark-colored fragments tumble in Hayabusa2’s shadow in the space beneath the craft.” Credits: JAXA and the Planetary Society

As this article goes to press, we are deciding whether to collect a second sample from a region close to the crater or from a second site on the asteroid. This second sample will likely be our last since by July, Ryugu will be nearing the perihelion of its orbit, and its surface will become too warm for touchdown operations.

Hayabusa2 will then continue to examine Ryugu remotely until the end of the year and return to Earth with the samples at the end of 2020. It is going to be a busy few years!

This week the spacecraft made a “Low descent observation operation“, that is, it came in close and successfully dropped a target marker on the surface of the asteroid.

Preparations for the descent began on June 11 and the descent will begin on June 12 at 11:40 JST (on-board time) with the spacecraft descending at a speed of 0.4m/s. The speed will be reduced to 0.1 m/s at 22:00 JST on the same day. The spacecraft will read an altitude of about 35m on June 13 at 10:34 JST and then begin to ascend from 10:57 JST. The schedule of the operation is shown in Figure 1. Please be aware that the actual operation time may differ as the times shown are the planned values.

Low altitude sequence
Low altitude sequence for PPTD-TM1B. Credit: JAXA.

A view of Ryugu as the spacecraft closed in on it:

Ryugu - June.13.2019
A view of Ryugu on June 13th from Hayabusa2 as it approached the surface.

To make a model of Hayabusa2, check out the JAXA paper models page.

** An update on operational science spacecraft spread throughout the solar system: Where We Are: An At-A-Glance Spacecraft Locator | The Planetary Society

Where We Are 2019-July-1
A diagram illustrating status of space science missions. Credits: Loren Roberts for The Planetary Society after a concept by Olaf Frohn

** Privately funded instrument on ESO’s VLT to search for near-by earth-like exoplanets: Breakthrough Watch and the European Southern Observatory achieve “first light” on upgraded planet-finding instrument to search for Earth-like planets in nearest star system | ESO

Newly-built planet-finding instrument installed on Very Large Telescope, Chile, begins 100-hour observation of nearby stars Alpha Centauri A and B, aiming to be first to directly image a habitable exoplanet

Breakthrough Watch, the global astronomical program looking for Earth-like planets around nearby stars, and the European Southern Observatory (ESO), Europe’s foremost intergovernmental astronomical organisation, today announced “first light” on a newly-built planet-finding instrument at ESO’s Very Large Telescope in the Atacama Desert, Chile.

The instrument, called NEAR (Near Earths in the AlphaCen Region), is designed to hunt for exoplanets in our neighbouring star system, Alpha Centauri, within the “habitable zones” of its two Sun-like stars, where water could potentially exist in liquid form. It has been developed over the last three years and was built in collaboration with the University of Uppsala in Sweden, the University of Liège in Belgium, the California Institute of Technology in the US, and Kampf Telescope Optics in Munich, Germany.

ESO’s Very Large Telescope (VLT) has recently received an upgraded addition to its suite of advanced instruments. On 21 May 2019 the newly modified instrument VISIR (VLT Imager and Spectrometer for mid-Infrared) made its first observations since being modified to aid in the search for potentially habitable planets in the Alpha Centauri system, the closest star system to Earth. This stunning image of the VLT is painted with the colours of sunset and reflected in water on the platform. While inclement weather at Cerro Paranal is unfortunate for the astronomers using it, it lets us see ESO’s flagship telescope in a new light.

More about the Watch project can be found at Breakthrough Initiatives, which is funded by Yuri Milner.

** Starshades would enable space telescopes to image earth-like exoplanets by masking out the light of their stars. NASA’s Starshade Technology Development program (ExEP) has come up with techniques for maintaining the extremely precise alignment needed between the starshade and the telescope, which will reside tens of thousands of kilometers apart: Starshade Would Take Formation Flying to Extremes | NASA.

“We can sense a change in the position of the starshade down to an inch, even over these huge distances,” Bottom said.

But detecting when the starshade is out of alignment is an entirely different proposition from actually keeping it aligned. To that end, Flinois and his colleagues developed a set of algorithms that use information provided by Bottom’s program to determine when the starshade thrusters should fire to nudge it back into position. The algorithms were created to autonomously keep the starshade aligned with the telescope for days at a time.

Combined with Bottom’s work, this shows that keeping the two spacecraft aligned is feasible using automated sensors and thruster controls. In fact, the work by Bottom and Flinois demonstrates that engineers could reasonably meet the alignment demands of an even larger starshade (in conjunction with a larger telescope), positioned up to 46,000 miles (74,000 kilometers) from the telescope.

A starshade project has not yet been approved for flight, but one could potentially join WFIRST in space in the late 2020s. Meeting the formation-flying requirement is just one step toward demonstrating that the project is feasible.

A demo of a starshade deployment:

**  Hubble images a small galaxy “furiously forming” stars : Hubble Observes Tiny Galaxy with Big Heart | ESA/Hubble

Nestled within this field of bright foreground stars lies ESO 495-21, a tiny galaxy with a big heart. ESO 495-21 may be just 3000 light-years across, but that is not stopping the galaxy from furiously forming huge numbers of stars. It may also host a supermassive black hole; this is unusual for a galaxy of its size, and may provide intriguing hints as to how galaxies form and evolve.

Nestled within this field of bright foreground stars lies ESO 495-21, a tiny galaxy with a big heart. ESO 495-21 is just 3000 light-years across, a fraction of the size of the Milky Way, but that is not stopping the galaxy from furiously forming huge numbers of stars. There are also indicators for a supermassive black hole in its centre – an unusual component for a galaxy of its size.

** Mars:

** Mars 2020 rover includes instruments for detecting signs of life: Johnson-Built Device to Help Mars 2020 Rover Search for Signs of Life | NASA

Next summer, NASA is launching the Mars 2020 robotic rover to the Red Planet, loaded with equipment to search for signs that there once was life on Mars. One device, called the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument, will be used to detect chemicals on the Martian surface that are linked to the existence of life. To keep the instrument working well, a team from the Astromaterials Research and Exploration Science (ARES) division at NASA’s Johnson Space Center (JSC) recently built a new calibration device for the rover to check SHERLOC’s function and properly tune it during the upcoming mission.

“SHERLOC is pretty complicated, and we came up with a list of 11 things that all have to be calibrated on this instrument,” said Marc Fries, ARES planetary scientist and Mars 2020 instrument co-investigator. “This sophisticated calibration device is also going to be used for a lot of other scientific and engineering investigations, and we’re really excited that it’s JSC’s contribution to the Mars 2020 rover.”

** And Mars 2020 rover instruments will help with human missions as well: NASA’s Mars 2020 Will Blaze a Trail – for Humans – NASA JPL

When a female astronaut first sets foot on the Moon in 2024, the historic moment will represent a step toward another NASA first: eventually putting humans on Mars. NASA’s latest robotic mission to the Red Planet, Mars 2020, aims to help future astronauts brave that inhospitable landscape.

While the science goal of the Mars 2020 rover is to look for signs of ancient life – it will be the first spacecraft to collect samples of the Martian surface, caching them in tubes that could be returned to Earth on a future mission – the vehicle also includes technology that paves the way for human exploration of Mars.

** More Mars exploration with Bob Zimmerman:

*** Ghost dunes on Mars – A “Star Trek Federation” logo feature is created by winds blowing on sand dunes:

Cool image time! The Mars Reconnaissance (MRO) science team today released a captioned image of several ghost dunes on Mars. The image [below] is cropped and reduced to highlight one of those ghosts, which the scientists explain as follows.

Long ago, there were large crescent-shaped (barchan) dunes that moved across this area, and at some point, there was an eruption. The lava flowed out over the plain and around the dunes, but not over them. The lava solidified, but these dunes still stuck up like islands. However, they were still just dunes, and the wind continued to blow. Eventually, the sand piles that were the dunes migrated away, leaving these “footprints” in the lava plain.

Dune Footprints in Hellas
“These curious chevron shapes in southeast Hellas Planitia are the result of a complex story of dunes, lava, and wind.” – HiRISE at Univ. of Arizona

*** The Martian North Pole –  A tour of the many weird features of the Martian north pole area:

Since the very beginning of telescopic astronomy, the Martian poles have fascinated. Their changing sizes as the seasons progressed suggested to the early astronomers that Mars might be similar to Earth. Since the advent of the space age we have learned that no, Mars is not similar to Earth, and that its poles only resemble Earth’s in a very superficial way.

Yet, understanding the geology and seasonal evolution of the Martian poles is critical to understanding the planet itself.

Dunes Dubbed Cool Fans
Dunes Dubbed Cool Fans – HiRISE at Univ. of Arizona

====

Brief Answers to the Big Questions – Stephen Hawking

Videos: Night sky highlights for June 2019

A preview of the June night sky from NASA JPL: What’s Up: June 2019 Skywatching Tips from NASA | NASA Solar System Exploration

What’s up in the June sky? Jupiter is at its biggest and brightest, Mercury and Mars appear ultra-close and how you can observe the Moon’s tilted orbit.

** Another view from the Hubble Space Telescope Science Institute:

** And here the view of the Northern Hemisphere from Alyn Wallace:

====

Telescopes and Binoculars at Amazon

Space sciences roundup – May.10.2019

A sampling of recent articles, videos, and images from space-related science news items:

** Experiments designed and built by students were among the 38 R&D payloads on the recent Blue Origin New Shepard flight to 106 km:

For example, the UCLA team of 11 students designed and built an experimental magnetic pump named Blue Dawn that will work in zero-gravity:

“The goal was to see if we could design an efficient fluid pump without any moving parts to work in zero-gravity, which has never been done before,” said Alexander Gonzalez, fourth-year physics major and undergrad science lead on the project. Such a low-maintenance pump would be ideal for moving various liquids on the International Space Station, and could reduce the risk of motorized pump failures for rovers and even future bases on the moon or Mars.

** Living tissues embedded in 3D electronics chips were among the research projects on the recent SpaceX Dragon Cargo mission to the ISS. The company Emulate, Inc. sent “organs-on-chips” to the ISS to study the Effects of Microgravity on Human Physiology including

the effect of microgravity and other space-related stressors on the brain blood barrier. It uses fully automated tissue chip technology, a Brain-Chip, consisting of living neuronal and vascular endothelial cells in a micro-engineered environment. Results may provide insight into the relationship between inflammation and brain function and a better understanding of neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

More about tissue chip research in microgravity:

** The latest sunspot count: Sunspot update April 2019: Not quite minimum | Behind The Black

As the Sun ramps down to minimum it will have months where there is no activity, as happened in February 2019, and months, such as in March and April, where more sunspots appear.

Eventually the quiet months will become dominate, and soon thereafter, when activity increases again (assuming it does), the solar science community will then announce the date of true minimum.

We are not there. Normally it can take a year or more for the Sun to settle down. If activity declines as indicated by the red curve, it could take as long four years, which would be a record-long minimum. The difference will tell us whether the eleven-year solar cycle is continuing, or the Sun is heading into a grand minimum, with no significant sunspots for decades.

** Measuring the magnetism of Mars and Jupiter were discussed on the recent TMRO.tv episode Orbit 12.15:

NASA’s MAVEN Magnetometer Instrument Lead Dr. Jared Espley joins us to talk about MAVEN, Juno and how we measure the magnetism of planets in our local system. More information on MAVEN can be found here: https://www.nasa.gov/mission_pages/ma… And more information on Juno can be found here: https://www.nasa.gov/mission_pages/ju…

** The mystery of Mars water remains unsolved: Mars Used to Have Water, But We Can’t Explain How | The Planetary Society

Mars has been the most extensively studied planet in the Solar System, except of course Earth. For the last 25 years, these missions have focused on the search for life by “following the water.” Although we have acquired compelling evidence of flowing liquid water on early Mars, the fundamental question about how water could be stable under Martian atmospheric conditions remains unsolved. Everything we have learned about Mars points towards a freezing cold Martian climate that would be incapable of stabilizing liquid water throughout Mars’ history.

** Even dry asteroids contain water in our wet solar system: Water has been found in dust of an asteroid thought to be bone-dry | Science News

Grains of dust from the asteroid Itokawa actually contain a surprising amount of water, two cosmochemists from Arizona State University in Tempe report May 1 in Science Advances.

“We didn’t really expect water to be there in Itokawa at all,” says study coauthor Maitrayee Bose. But if similar asteroids have similar amounts of water, the space rocks could have been a major source of water for the early Earth.

** More cave openings spotted on Mars and analyzed by Bob Zimmerman: The many pits of Arsia Mons | Behind The Black

Arsia Mons pits 2019. Credits Behind-the-Black

The many pits surrounding Arsia Mons highlight a far greater mystery about Martian geology. Some geologists believe that the many meandering channels we see on Mars could have formed not from surface flow as generally assumed but by underground drainage that washed out voids below the ground which in turn caused the surface to subside, forming those meandering channels.

Yet, as far as I can tell, the only place where scientists have been able to identify a significant number of potential cave openings are on the volcanic slopes of Arisa Mons and its neighboring giant volcanos. There are exceptions, such as this spectacular pit at the head of a channel in the transition zone between the southern highlands and the northern lowlands, as well as two different pits, here and here, that are located in the lowlands in Utopia Basin. Overall however the bulk of pits imaged by MRO appear to be on the slopes of the giant volcanoes, with the majority so far found near Arsia Mons.

** Insight lander images sunrise and sunset on Mars: InSight Captures Sunrise and Sunset on Mars | NASA

A camera on the spacecraft’s robotic arm snapped the photos on April 24 and 25, the 145th Martian day, or sol, of the mission. In local Mars time, the shots were taken starting around 5:30 a.m. and then again starting around 6:30 p.m. As a bonus, a camera under the lander’s deck also caught clouds drifting across the Martian sky at sunset.

Insight captures a sunset.
“NASA’s InSight lander used the Instrument Deployment Camera (IDC) on the end of its robotic arm to image this sunset on Mars on April 25, 2019, the 145th Martian day, or sol, of the mission. This was taken around 6:30 p.m. Mars local time.” Credits: NASA/JPL-Caltech. Full image and caption

** NASA orbiter measures the temperature of Mars moon Phobos: Why This Martian Full Moon Looks Like Candy – NASA JPL

For the first time, NASA’s Mars Odyssey orbiter has caught the Martian moon Phobos during a full moon phase. Each color in this new image represents a temperature range detected by Odyssey’s infrared camera, which has been studying the Martian moon since September of 2017. Looking like a rainbow-colored jawbreaker, these latest observations could help scientists understand what materials make up Phobos, the larger of Mars’ two moons.

Odyssey is NASA’s longest-lived Mars mission. Its heat-vision camera, the Thermal Emission Imaging System (THEMIS), can detect changes in surface temperature as Phobos circles Mars every seven hours. Different textures and minerals determine how much heat THEMIS detects.

Phobos temperature

Such measurements can help determine the composition of the moon, particularly the minerals and metals:

Iron and nickel are two such metals. Depending on how abundant the metals are, and how they’re mixed with other minerals, these data could help determine whether Phobos is a captured asteroid or a pile of Mars fragments, blasted into space by a giant impact long ago.

These recent observations won’t definitively explain Phobos’ origin, Bandfield added. But Odyssey is collecting vital data on a moon scientists still know little about – one that future missions might want to visit. Human exploration of Phobos has been discussed in the space community as a distant, future possibility, and a Japanese sample-return mission to the moon is scheduled for launch in the 2020s.

** Hubble telescope images assembled into a giant mosaic of 265k galaxies: Hubble Assembles Wide View of the Distant Universe | ESA/Hubble

Astronomers developed a mosaic of the distant Universe that documents 16 years of observations from the NASA/ESA Hubble Space Telescope. The image, called the Hubble Legacy Field, contains roughly 265,000 galaxies that stretch back to just 500 million years after the Big Bang.

The wavelength range of this image stretches from ultraviolet to near-infrared light, capturing all the features of galaxy assembly over time. The faintest and farthest galaxies in the image are just one ten-billionth the brightness of what the human eye can observe.

“Now that we have gone wider than in previous surveys, we are harvesting many more distant galaxies in the largest such dataset ever produced,” said Garth Illingworth of the University of California, Santa Cruz, leader of the team that assembled the image. “No image will surpass this one until future space telescopes like James Webb are launched.”

This video “takes the viewer on a journey into the Hubble Legacy Field”:

** Tracking Gaia precisely to get precise locations of a billion stars: Pinpointing Gaia to Map the Milky Way | ESO

This image, a composite of several observations captured by ESO’s VLT Survey Telescope (VST), shows the ESA spacecraft Gaia as a faint trail of dots across the lower half of the star-filled field of view. These observations were taken as part of an ongoing collaborative effort to measure Gaia’s orbit and improve the accuracy of its unprecedented star map.

This image, a composite of several observations captured by ESO’s VLT Survey Telescope (VST), shows the space observatory Gaia as a faint trail of dots across the lower half of the star-filled field of view. These observations were taken as part of an ongoing collaborative effort to measure Gaia’s orbit and improve the accuracy of its unprecedented star map.

Gaia, operated by the European Space Agency (ESA), surveys the sky from orbit to create the largest, most precise, three-dimensional map of our Galaxy. One year ago, the Gaia mission produced its much-awaited second data release, which included high-precision measurements — positions, distance and proper motions — of more than one billion stars in our Milky Way galaxy. This catalogue has enabled transformational studies in many fields of astronomy, addressing the structure, origin and evolution the Milky Way and generating more than 1700 scientific publications since its launch in 2013.

In order to reach the accuracy necessary for Gaia’s sky maps, it is crucial to pinpoint the position of the spacecraft from Earth. Therefore, while Gaia scans the sky, gathering data for its stellar census, astronomers regularly monitor its position using a global network of optical telescopes, including the VST at ESO’s Paranal Observatory [1]. The VST is currently the largest survey telescope observing the sky in visible light, and records Gaia’s position in the sky every second night throughout the year.

** A Galaxy Grouping in 2D and 3D: Stephan’s Quintet;

In 1877, Edouard Stephan discovered a tight visual grouping of five galaxies located in the constellation Pegasus. The galaxies of Stephan’s Quintet are both overlapping and interacting, and have become the most famous among the compact groups of galaxies. Astronomers have long known that four of the galaxies (all of which are yellowish-white in this video) form a physical group in space, while the fifth (bluish) is a foreground galaxy. In addition, a sixth galaxy (yellowish-white and on the far left) is likely to be part of the physical grouping. Hence, this 2D quintet that is a 3D quartet may actually be a 2D sextet that is a 3D quintet.

This visualization makes apparent the spatial distribution of these galaxies. The video starts with a view that matches our 2D perspective. As the sequence travels in 3D, the foreground blue spiral, NGC 7320, quickly passes by the camera. The possible sixth galaxy member on the left, NGC 7320C, is seen at roughly the same distance as the remaining four galaxies. The camera turns to pass between two strongly interacting galaxies, NGC 7319 (left) and NGC 7318B (right), with each galaxy’s spiral structure distorted by the gravitational interaction. In contrast, NGC 7318B overlaps in 2D with the more distant elliptical NGC 7318A, but does not have a strong interaction. The other elliptical, NGC 7317, is also seen as more distant than the strongly interacting pair. In 3D, the four or five galaxies in this group are gathered together by their mutual gravity, and may collide and merge together in the future.

Credits: G. Bacon, J. DePasquale, F. Summers, Z. Levay (STScI)

====

Outpost in Orbit: A Pictorial & Verbal History of the Space Station