Space sciences roundup – May.10.2019

A sampling of recent articles, videos, and images from space-related science news items:

** Experiments designed and built by students were among the 38 R&D payloads on the recent Blue Origin New Shepard flight to 106 km:

For example, the UCLA team of 11 students designed and built an experimental magnetic pump named Blue Dawn that will work in zero-gravity:

“The goal was to see if we could design an efficient fluid pump without any moving parts to work in zero-gravity, which has never been done before,” said Alexander Gonzalez, fourth-year physics major and undergrad science lead on the project. Such a low-maintenance pump would be ideal for moving various liquids on the International Space Station, and could reduce the risk of motorized pump failures for rovers and even future bases on the moon or Mars.

** Living tissues embedded in 3D electronics chips were among the research projects on the recent SpaceX Dragon Cargo mission to the ISS. The company Emulate, Inc. sent “organs-on-chips” to the ISS to study the Effects of Microgravity on Human Physiology including

the effect of microgravity and other space-related stressors on the brain blood barrier. It uses fully automated tissue chip technology, a Brain-Chip, consisting of living neuronal and vascular endothelial cells in a micro-engineered environment. Results may provide insight into the relationship between inflammation and brain function and a better understanding of neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

More about tissue chip research in microgravity:

** The latest sunspot count: Sunspot update April 2019: Not quite minimum | Behind The Black

As the Sun ramps down to minimum it will have months where there is no activity, as happened in February 2019, and months, such as in March and April, where more sunspots appear.

Eventually the quiet months will become dominate, and soon thereafter, when activity increases again (assuming it does), the solar science community will then announce the date of true minimum.

We are not there. Normally it can take a year or more for the Sun to settle down. If activity declines as indicated by the red curve, it could take as long four years, which would be a record-long minimum. The difference will tell us whether the eleven-year solar cycle is continuing, or the Sun is heading into a grand minimum, with no significant sunspots for decades.

** Measuring the magnetism of Mars and Jupiter were discussed on the recent TMRO.tv episode Orbit 12.15:

NASA’s MAVEN Magnetometer Instrument Lead Dr. Jared Espley joins us to talk about MAVEN, Juno and how we measure the magnetism of planets in our local system. More information on MAVEN can be found here: https://www.nasa.gov/mission_pages/ma… And more information on Juno can be found here: https://www.nasa.gov/mission_pages/ju…

** The mystery of Mars water remains unsolved: Mars Used to Have Water, But We Can’t Explain How | The Planetary Society

Mars has been the most extensively studied planet in the Solar System, except of course Earth. For the last 25 years, these missions have focused on the search for life by “following the water.” Although we have acquired compelling evidence of flowing liquid water on early Mars, the fundamental question about how water could be stable under Martian atmospheric conditions remains unsolved. Everything we have learned about Mars points towards a freezing cold Martian climate that would be incapable of stabilizing liquid water throughout Mars’ history.

** Even dry asteroids contain water in our wet solar system: Water has been found in dust of an asteroid thought to be bone-dry | Science News

Grains of dust from the asteroid Itokawa actually contain a surprising amount of water, two cosmochemists from Arizona State University in Tempe report May 1 in Science Advances.

“We didn’t really expect water to be there in Itokawa at all,” says study coauthor Maitrayee Bose. But if similar asteroids have similar amounts of water, the space rocks could have been a major source of water for the early Earth.

** More cave openings spotted on Mars and analyzed by Bob Zimmerman: The many pits of Arsia Mons | Behind The Black

Arsia Mons pits 2019. Credits Behind-the-Black

The many pits surrounding Arsia Mons highlight a far greater mystery about Martian geology. Some geologists believe that the many meandering channels we see on Mars could have formed not from surface flow as generally assumed but by underground drainage that washed out voids below the ground which in turn caused the surface to subside, forming those meandering channels.

Yet, as far as I can tell, the only place where scientists have been able to identify a significant number of potential cave openings are on the volcanic slopes of Arisa Mons and its neighboring giant volcanos. There are exceptions, such as this spectacular pit at the head of a channel in the transition zone between the southern highlands and the northern lowlands, as well as two different pits, here and here, that are located in the lowlands in Utopia Basin. Overall however the bulk of pits imaged by MRO appear to be on the slopes of the giant volcanoes, with the majority so far found near Arsia Mons.

** Insight lander images sunrise and sunset on Mars: InSight Captures Sunrise and Sunset on Mars | NASA

A camera on the spacecraft’s robotic arm snapped the photos on April 24 and 25, the 145th Martian day, or sol, of the mission. In local Mars time, the shots were taken starting around 5:30 a.m. and then again starting around 6:30 p.m. As a bonus, a camera under the lander’s deck also caught clouds drifting across the Martian sky at sunset.

Insight captures a sunset.
“NASA’s InSight lander used the Instrument Deployment Camera (IDC) on the end of its robotic arm to image this sunset on Mars on April 25, 2019, the 145th Martian day, or sol, of the mission. This was taken around 6:30 p.m. Mars local time.” Credits: NASA/JPL-Caltech. Full image and caption

** NASA orbiter measures the temperature of Mars moon Phobos: Why This Martian Full Moon Looks Like Candy – NASA JPL

For the first time, NASA’s Mars Odyssey orbiter has caught the Martian moon Phobos during a full moon phase. Each color in this new image represents a temperature range detected by Odyssey’s infrared camera, which has been studying the Martian moon since September of 2017. Looking like a rainbow-colored jawbreaker, these latest observations could help scientists understand what materials make up Phobos, the larger of Mars’ two moons.

Odyssey is NASA’s longest-lived Mars mission. Its heat-vision camera, the Thermal Emission Imaging System (THEMIS), can detect changes in surface temperature as Phobos circles Mars every seven hours. Different textures and minerals determine how much heat THEMIS detects.

Phobos temperature

Such measurements can help determine the composition of the moon, particularly the minerals and metals:

Iron and nickel are two such metals. Depending on how abundant the metals are, and how they’re mixed with other minerals, these data could help determine whether Phobos is a captured asteroid or a pile of Mars fragments, blasted into space by a giant impact long ago.

These recent observations won’t definitively explain Phobos’ origin, Bandfield added. But Odyssey is collecting vital data on a moon scientists still know little about – one that future missions might want to visit. Human exploration of Phobos has been discussed in the space community as a distant, future possibility, and a Japanese sample-return mission to the moon is scheduled for launch in the 2020s.

** Hubble telescope images assembled into a giant mosaic of 265k galaxies: Hubble Assembles Wide View of the Distant Universe | ESA/Hubble

Astronomers developed a mosaic of the distant Universe that documents 16 years of observations from the NASA/ESA Hubble Space Telescope. The image, called the Hubble Legacy Field, contains roughly 265,000 galaxies that stretch back to just 500 million years after the Big Bang.

The wavelength range of this image stretches from ultraviolet to near-infrared light, capturing all the features of galaxy assembly over time. The faintest and farthest galaxies in the image are just one ten-billionth the brightness of what the human eye can observe.

“Now that we have gone wider than in previous surveys, we are harvesting many more distant galaxies in the largest such dataset ever produced,” said Garth Illingworth of the University of California, Santa Cruz, leader of the team that assembled the image. “No image will surpass this one until future space telescopes like James Webb are launched.”

This video “takes the viewer on a journey into the Hubble Legacy Field”:

** Tracking Gaia precisely to get precise locations of a billion stars: Pinpointing Gaia to Map the Milky Way | ESO

This image, a composite of several observations captured by ESO’s VLT Survey Telescope (VST), shows the ESA spacecraft Gaia as a faint trail of dots across the lower half of the star-filled field of view. These observations were taken as part of an ongoing collaborative effort to measure Gaia’s orbit and improve the accuracy of its unprecedented star map.

This image, a composite of several observations captured by ESO’s VLT Survey Telescope (VST), shows the space observatory Gaia as a faint trail of dots across the lower half of the star-filled field of view. These observations were taken as part of an ongoing collaborative effort to measure Gaia’s orbit and improve the accuracy of its unprecedented star map.

Gaia, operated by the European Space Agency (ESA), surveys the sky from orbit to create the largest, most precise, three-dimensional map of our Galaxy. One year ago, the Gaia mission produced its much-awaited second data release, which included high-precision measurements — positions, distance and proper motions — of more than one billion stars in our Milky Way galaxy. This catalogue has enabled transformational studies in many fields of astronomy, addressing the structure, origin and evolution the Milky Way and generating more than 1700 scientific publications since its launch in 2013.

In order to reach the accuracy necessary for Gaia’s sky maps, it is crucial to pinpoint the position of the spacecraft from Earth. Therefore, while Gaia scans the sky, gathering data for its stellar census, astronomers regularly monitor its position using a global network of optical telescopes, including the VST at ESO’s Paranal Observatory [1]. The VST is currently the largest survey telescope observing the sky in visible light, and records Gaia’s position in the sky every second night throughout the year.

** A Galaxy Grouping in 2D and 3D: Stephan’s Quintet;

In 1877, Edouard Stephan discovered a tight visual grouping of five galaxies located in the constellation Pegasus. The galaxies of Stephan’s Quintet are both overlapping and interacting, and have become the most famous among the compact groups of galaxies. Astronomers have long known that four of the galaxies (all of which are yellowish-white in this video) form a physical group in space, while the fifth (bluish) is a foreground galaxy. In addition, a sixth galaxy (yellowish-white and on the far left) is likely to be part of the physical grouping. Hence, this 2D quintet that is a 3D quartet may actually be a 2D sextet that is a 3D quintet.

This visualization makes apparent the spatial distribution of these galaxies. The video starts with a view that matches our 2D perspective. As the sequence travels in 3D, the foreground blue spiral, NGC 7320, quickly passes by the camera. The possible sixth galaxy member on the left, NGC 7320C, is seen at roughly the same distance as the remaining four galaxies. The camera turns to pass between two strongly interacting galaxies, NGC 7319 (left) and NGC 7318B (right), with each galaxy’s spiral structure distorted by the gravitational interaction. In contrast, NGC 7318B overlaps in 2D with the more distant elliptical NGC 7318A, but does not have a strong interaction. The other elliptical, NGC 7317, is also seen as more distant than the strongly interacting pair. In 3D, the four or five galaxies in this group are gathered together by their mutual gravity, and may collide and merge together in the future.

Credits: G. Bacon, J. DePasquale, F. Summers, Z. Levay (STScI)

====

Outpost in Orbit: A Pictorial & Verbal History of the Space Station

Space policy roundup – May.10.2019

A sampling of links to recent space policy, politics, and government (US and international) related space news and resource items that I found of interest:

Webcasts:

** The Space Show – Tue, 05/07/2019Robert Zimmerman discussed “a variety of topics starting with the smallsat industry with launchers and ending with comments about the Boeing 737 Max and possible Boeing space impact”.

** The Space Show – Mon, 05/06/2019Dr. Greg Autry talked about “the upcoming ISDC Conference, space budgets, spending and the US national debt, and the Chinese space and lunar policy plus US concerns about China and space and the Mon”.

** The Space Show – Sun, 05/05/2019 – Talked with  Leonard David and then followed with an open lines discussion with listeners. Topics covered included “Leonard’s new book “Moon Rush: The New Space Race, policy and budget challenges for returning to the Moon, presidential candidates and space policy, Navy-Air Force UFO policy reporting changes and more”.

** House Science Committee Hearing: Keeping Our Sights on Mars: A Review of NASA’s Deep Space Exploration Programs and Lunar Proposal – Leonard David

====

 

====

Moon Rush: The New Space Race

Space transport roundup – May.9.2019

A sampling of recent articles, videos, and images dealing with space transport:

[ Update: A message from Blue Origin today points to a video of the Blue Moon unveiling yesterday.

On May 9, 2019, our founder discussed his vision to go to space to benefit Earth.

Watch the full replay of this event

In addition, he also announced the Blue Moon lunar lander, which is capable of taking people and payloads to the lunar surface. Below you’ll find more information about these announcements.

Blue Moon lunar landerBlue Origin announced Blue Moon, its large lunar lander capable of delivering multiple metric tons of payload to the lunar surface based on configuration and mission. The cargo variant revealed today can carry 3.6 metric tons to the surface. We have also designed a variant of the lander that can stretch to be capable of carrying a 6.5-metric-ton, human-rated ascent stage. Blue also announced it can meet the current Administration’s goal of putting Americans on the Moon by 2024 with the Blue Moon lunar lander. 

BE-7 engineThe Blue Moon lunar lander will be powered by the BE-7 engine, a new addition to Blue Origin’s family of engines. The BE-7’s 40 kN (10,000 lbf) thrust is designed for large lunar payload transport. The engine’s propellants are a highly-efficient combination of liquid oxygen and liquid hydrogen. The BE-7 will have its first hotfire this summer. The engine will be available for sale to other companies for use in in-space and lander applications.

Club For the Future: A non-profit founded by Blue Origin dedicated to inspiring and engaging the next generation of dreamers and space entrepreneurs as we journey to preserve Earth and unlock the potential of living and working in space. The Club will bring together K-12 students, educators and leaders for campaigns and initiatives utilizing Blue Origin’s unique access to space. The Club’s first activity will be to send a postcard to space and back on a future New Shepard mission—the first ever space mail. Learn more on the website (www.clubforfuture.org). Follow @ClubforFuture on Twitter and Instagram.

]

**  Jeff Bezos unveiled Blue Origin‘s Blue Moon lunar lander design at an event today –

Blue Moon is a flexible lander delivering a wide variety of small, medium and large payloads to the lunar surface. Its capability to provide precise and soft landings will enable a sustained human presence on the Moon.

Initially for cargo and later for human transport:

The Blue Moon lander can deliver large infrastructure payloads with high accuracy to pre-position systems for future missions. The larger variant of Blue Moon has been designed to land an ascent vehicle that will allow us to return Americans to the Moon by 2024.

Blue Moon with Ascent Vehicle
Blue Moon with ascent vehicle.

The lander is powered by the BE-7 Liquid Oxygen/Liquid Hydrogen engine, which will begin hot fire tests this summer.

… high specific impulse, deep throttling and restart capabilities of the BE-7 make the engine ideal for large lunar payload transport, while enabling Blue Moon’s oxygen/hydrogen fuel cell power system.

Blue Origin BE-7 Engine
Blue Origin BE-7 Engine

** Highlights of engine development by PLD Space in Spain, which is developing suborbital and orbital rockets with reusable boosters:

https://youtu.be/RK7GSw5nkts

** More about Spinlaunch‘s facility under construction at Spaceport America in New Mexico:

From Space.com:

This fact sheet lays out the envisioned launch cost and frequency, for instance, and states that SpinLaunch aims to loft its first payload by 2022. And we get the following description of the launch system:

“SpinLaunch utilizes existing technology and components from oil/gas/mining and wind turbine industries to construct an innovative mass-acceleration system, which achieves very high launch speeds without the need for enormous power generation or massive infrastructure. After ascending above the atmosphere, a relatively small, low-cost onboard rocket will be used to provide the final required velocity for orbital insertion. Because the majority of the energy required to reach orbit is sourced from ground-based electricity, as opposed to complex onboard rocket propulsion, total launch cost is reduced by an order of magnitude over existing launch systems.”

** Rocket Crafters partners with RUAG of Switzerland on development of rockets based on Rocket Crafters’s hybrid motor technology:

From the press release:

Rocket Crafters, a manufacturer of advanced rockets operating from the Florida Space Coast, and RUAG Space, a leading independent product supplier for spacecraft, electronics and launchers, signed a Memorandum of Understanding (MOU) at Satellite Conference 2019 in Washington D.C. – creating a new supplier agreement in the small launcher market.

Rocket Crafters will collaborate with RUAG on the design, development and procurement of a sounding rocket guidance and navigation system, nose cone and aeroshell in order to support an initial test flight, with the goal to achieve reliable, cost effective and fast time-to-market.

Sub-Orbital Flight Rocket Crafters rocket
A Rocket Crafters suborbital rocket in flight.

** Leaders of launch services providers gave their views on the status of the industry this week during panels at the Satellite 2019 conference:

** SpaceX:

*** A Dragon Crew vehicle parachute test went awry back in April: SpaceX had a problem during a parachute test in April | Ars Technica

The test appears to have occurred last month at Delamar Dry Lake in Nevada, where SpaceX was conducting one of dozens of drop tests it intends to perform to demonstrate the safety of its Crew Dragon spacecraft. This was a “single-out” test in which one of Dragon’s four parachutes intentionally failed before the test. “The three remaining chutes did not operate properly,” [NASA’s chief of human spaceflight Bill Gerstenmaier] said.

A follow-up:

*** Aerospace Corp is “overseeing the process of safely packing more than two dozen satellites” into the fairing of the Falcon Heavy for the STP-2 mission set for June : SpaceX’s Falcon Heavy Hauls a Complex Payload | The Aerospace Corporation

The Aerospace team in Albuquerque, New Mexico, is playing a major role in the flight, making sure all the satellites fit together aboard the world’s most powerful rocket. Aerospace engineers ensure the payloads don’t negatively affect each other in this complex arrangement by using a rideshare mission assurance protocol called “Do-No-Harm” (DNH). DNH is a process that focuses on ensuring no payload on a rideshare mission will negatively affect the on-orbit functionality of any other payload. The individual payloads on STP-2 are all responsible for their own mission success, but through the DNH process, Aerospace is ensuring that everyone inside the Falcon Heavy nose cone plays nice with each other.

*** Gwynne Shotwell talked about the upcoming launch of Starlink satellites during the recent launch providers panel at the Satellite 2019 conference: SpaceX to launch “dozens” of Starlink satellites May 15, more Starlink launches to follow – SpaceNews.com

Gwynne Shotwell, SpaceX’s president and chief operating officer, said the launch will carry “dozens of satellites,” adding more prototypes to the two currently in low Earth orbit.

“This next batch of satellites will really be a demonstration set for us to see the deployment scheme and start putting our network together,” she said at the Satellite 2019 conference here. “We start launching satellites for actual service later this year.”

Shotwell said SpaceX anticipates launching two to six more times for its Starlink broadband constellation in addition to the May 15 launch. How many Starlink launches occur this year depend on the results of this first batch, she said.

*** Falcon 9 booster legs retracted rather than removed. SpaceX introduced the Block 5 Falcon first stage boosters in 2018, hailing the design as the culmination of many lessons learned from landing and reusing the earlier generation boosters. Blk 5 boosters should provide up to a dozen launches between overhauls and to re-fly as soon as 24 hours after a launch. This requires quick operations such as simply retracting the landing legs back into their launch positions. During the past year, though, observers at Port Canaveral saw workers removing the legs before recovered Blk 5 boosters were transported back to the hangars.

That changed for the booster recovered from the recent Cargo Dragon CRS-17 mission to the ISS: SpaceX hits new Falcon 9 reusability milestone, retracts all four landing legs – Teslarati

SpaceX – All Legs Retracted – Historic Step 05-07-2019  (www.USLaunchReport.com) –

Still more video to come of Load and Transport. This is CRS-17, B1056 Booster. This video runs in real time{ No fast motion}. Takes place over three days. We know it’s long, we left out hours of footage.

** Low latitude flights of Starhopper may start happening in the next few weeks: SpaceX’s Starhopper gains thruster pods as hop test preparations ramp up – Teslararti

Amid a flurry of new construction at SpaceX’s Boca Chica facilities, technicians have begun to install thruster pods on Starhopper in anticipation of the prototype’s first untethered flights.

According to CEO Elon Musk, Starhopper’s “untethered hover tests” will begin with just one Raptor engine installed, potentially allowing hops to restart within the next few weeks. SpaceX is currently testing Raptor SN03 (and possibly SN02) a few hundred miles north in McGregor, Texas, just a few hours’ drive south once the engine is deemed flight-ready. Meanwhile, Starhopper itself needs a considerable amount of new hardware before it can begin Raptor-powered flight testing.

** Assembly of the demo orbital Starship prototype continues at Boca Chica as well:

 

====

Safe Is Not an Option

Videos: TMRO Orbit 12.16 – “Small rapid reusable rockets”

Here is the latest TMRO.tv space show:

Exos Aerospace’s COO John Quinn joins us to talk how rapidly reusable rockets could send experiments to space and have them back in scientists hands in just hours – leading to big advancements in medicine and research. Find out more about Exos Aerospace at https://exosaero.com/ Subscribe to their Youtube channel so they can stream their next launch! https://www.youtube.com/channel/UCh2d…

** The latest TMRO space news report:

In this weeks Space News from TMRO we start off with three launches: Blue Origin, SpaceX and Rocket Lab. Jared brings us an update on the SpaceX Starlink constellation and Jade talk about a very metallic universe! Our local sun has been very active this last week and Dr. Tamitha Skov bring us the latest space weather report.

*** And a news report from the week before:

====

Space 2.0: How Private Spaceflight, a Resurgent NASA,
and International Partners are Creating a New Space Age

Two teams 3D-printed prototype Mars habitats in battle for $700k from NASA

Here is an account of the Mars habitat printing contest held last week in Illinois between teams from Penn State and the New York-based design agency AI SpaceFactory in the final phase of NASA’s 3D-Printed Habitat Challenge competition: AI SpaceFactory Wins NASA’s 3D-Printed Extraterrestrial Habitats Challenge – IEEE Spectrum

In a cavernous arena outside of Peoria, Illinois, two industrial robots worked against the clock last weekend to finish their tasks. Each had been converted into a towering 3-D printer and programmed to build one-third-scale models of extraterrestrial habitats. For 30 hours over three days, generators chugged and hydraulics hissed as robotic arms moved in patterns, stacking long beads of thick “ink” into layers. Gradually, familiar forms began to emerge from the facility’s dirt floor: a gray, igloo-like dwelling and a tall, maroon egg.

Humanity’s future on Mars was taking shape.

AI SpaceFactory took first place and $500k while the Penn State team came in second and got $200k.

An overview of the contest from Caterpillar, one of the co-sponsors of the competition:

Here is a video from the AI SpaceFactory showing the construction and testing of their habitat structure:

A release from NASA on the awards

Teams 3D Print Planetary Habitats, Awarded $700K in NASA Challenge

After 30 hours of 3D printing over four days of head-to-head competition, NASA and partner Bradley University of Peoria, Illinois, have awarded $700,000 to two teams in the final round of the 3D-Printed Habitat Challenge. The top prize of $500,000 was awarded to New York based AI. SpaceFactory. Second-place and $200,000 was awarded to Pennsylvania State University of University Park.

The two teams faced off May 1-4 at Caterpillar’s Edwards Demonstration & Learning Center in Edwards, Illinois, creating subscale shelters out of recyclables and materials that could be found on deep-space destinations, like the Moon and Mars. The size of the structures had to be a one-third scale version of their architectural designs. Each team employed robotic construction techniques that allowed minimal human intervention. Such technologies will enable more sustainable and autonomous exploration missions.

“The final milestone of this competition is a culmination of extremely hard work by bright, inventive minds who are helping us advance the technologies we need for a sustainable human presence on the Moon, and then on Mars,” said Monsi Roman, program manager for NASA’s Centennial Challenges. “We celebrate their vision, dedication and innovation in developing concepts that will not only further NASA’s deep-space goals, but also provide viable housing solutions right here on Earth.”

The habitats were constructed in 10-hour increments in front of a panel of judges. Once printing was complete, the structures were subjected to several tests and evaluated for material mix, leakage, durability and strength.

Beginning in 2015, the multi-year, multi-phase competition challenged teams to demonstrate many different additive manufacturing technologies, from design to software modeling to physical construction. The unique challenge was competed in three phases: design, structural member and on-site habitat construction. The challenge structure allowed NASA to task the teams to address many facets of 3D construction, and to involve a broader range of teams with various expertise. Throughout the competition, more than 60 teams have participated, and NASA awarded over $2 million in prize money.

“It is an impressive achievement for these two teams to demonstrate this disruptive and terrific 3D-printing technology at such a large scale,” said Lex Akers, dean of Bradley’s Caterpillar College of Engineering and Technology. “By teaming up with NASA and Caterpillar, we are proud to bring these teams together in an environment where they can innovate, create and challenge our vision of what’s possible. Congratulations to both teams for their accomplishments.”

The 3D-Printed Habitat Challenge is managed through a partnership with NASA’s Centennial Challenges program and Bradley University in Peoria, Illinois. Bradley has partnered with sponsors Caterpillar, Bechtel, Brick & Mortar Ventures and the U.S. Army Corps of Engineers to administer the competition. NASA’s Centennial Challenges program is part of the agency’s Space Technology Mission Directorate, and is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

For more information about the 3D-Printed Habitat Challenge, visit: http://www.nasa.gov/3DPHab

====

Moon Rush: The New Space Race

Everyone can participate in space