Category Archives: Education

ESO: Galaxies observed surrounding a supermassive black hole in early universe

The latest report from ESO (European Southern Observatory):

ESO telescope spots galaxies trapped
in the web of a supermassive black hole

With the help of ESO’s Very Large Telescope (VLT), astronomers have found six galaxies lying around a supermassive black hole, the first time such a close grouping has been seen within the first billion years of the Universe. This artist’s impression shows the central black hole and the galaxies trapped in its gas web. The black hole, which together with the disc around it is known as quasar SDSS J103027.09+052455.0, shines brightly as it engulfs matter around it. Credits ESO.

With the help of ESO’s Very Large Telescope (VLT), astronomers have found six galaxies lying around a supermassive black hole when the Universe was less than a billion years old. This is the first time such a close grouping has been seen so soon after the Big Bang and the finding helps us better understand how supermassive black holes, one of which exists at the centre of our Milky Way, formed and grew to their enormous sizes so quickly. It supports the theory that black holes can grow rapidly within large, web-like structures which contain plenty of gas to fuel them.

“This research was mainly driven by the desire to understand some of the most challenging astronomical objects — supermassive black holes in the early Universe. These are extreme systems and to date we have had no good explanation for their existence,”

said Marco Mignoli, an astronomer at the National Institute for Astrophysics (INAF) in Bologna, Italy, and lead author of the new research published today in Astronomy & Astrophysics.

The new observations with ESO’s VLT revealed several galaxies surrounding a supermassive black hole, all lying in a cosmic “spider’s web” of gas extending to over 300 times the size of the Milky Way.

“The cosmic web filaments are like spider’s web threads,” explains Mignoli. “The galaxies stand and grow where the filaments cross, and streams of gas — available to fuel both the galaxies and the central supermassive black hole — can flow along the filaments.”

The light from this large web-like structure, with its black hole of one billion solar masses, has travelled to us from a time when the Universe was only 0.9 billion years old.

“Our work has placed an important piece in the largely incomplete puzzle that is the formation and growth of such extreme, yet relatively abundant, objects so quickly after the Big Bang,”

says co-author Roberto Gilli, also an astronomer at INAF in Bologna, referring to supermassive black holes.

This image shows the sky around SDSS J103027.09+052455.0, a quasar powered by a supermassive black hole surrounded by at least six galaxies. This picture was created from images in the Digitized Sky Survey 2. Credits ESO

The very first black holes, thought to have formed from the collapse of the first stars, must have grown very fast to reach masses of a billion suns within the first 0.9 billion years of the Universe’s life. But astronomers have struggled to explain how sufficiently large amounts of “black hole fuel” could have been available to enable these objects to grow to such enormous sizes in such a short time. The new-found structure offers a likely explanation: the “spider’s web” and the galaxies within it contain enough gas to provide the fuel that the central black hole needs to quickly become a supermassive giant.

But how did such large web-like structures form in the first place? Astronomers think giant halos of mysterious dark matter are key. These large regions of invisible matter are thought to attract huge amounts of gas in the early Universe; together, the gas and the invisible dark matter form the web-like structures where galaxies and black holes can evolve.

“Our finding lends support to the idea that the most distant and massive black holes form and grow within massive dark matter halos in large-scale structures, and that the absence of earlier detections of such structures was likely due to observational limitations,”

says Colin Norman of Johns Hopkins University in Baltimore, US, also a co-author on the study.

The galaxies now detected are some of the faintest that current telescopes can observe. This discovery required observations over several hours using the largest optical telescopes available, including ESO’s VLT. Using the MUSE and FORS2 instruments on the VLT at ESO’s Paranal Observatory in the Chilean Atacama Desert, the team confirmed the link between four of the six galaxies and the black hole.

“We believe we have just seen the tip of the iceberg, and that the few galaxies discovered so far around this supermassive black hole are only the brightest ones,”

said co-author Barbara Balmaverde, an astronomer at INAF in Torino, Italy.

These results contribute to our understanding of how supermassive black holes and large cosmic structures formed and evolved. ESO’s Extremely Large Telescope, currently under construction in Chile, will be able to build on this research by observing many more fainter galaxies around massive black holes in the early Universe using its powerful instruments.

Links

=== Amazon Ad ===

More Things in the Heavens:
How Infrared Astronomy Is Expanding Our View of the Universe

Student and amateur CubeSat news roundup – Sept.24.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** Western University (Canada) and Arizona State teams to collaborate on CubeSat project:

[On Sept. 23rd] …Western signed a game-changing memorandum of understanding (MoU) with the MILO Institute, a non-profit research collaboration led by Arizona State University and supported by Lockheed Martin and its subsidiary GEOshare.

As part of the agreement, [Electrical and computer engineering professor Jayshri] Sabarinathan and her Western Space collaborators will contribute a one-unit CubeSat (a square-shaped miniature satellite roughly the size of a Rubik’s cube) to a MILO Institute and University of Texas at El Paso flight mission planned for June 2021 – an aggressive timeline, she admits, but that just adds to the excitement.

The project will contribute to development of technology for lunar and other deep space exploration.

Sabarinathan is also leading the Western Institute of Earth & Space Exploration team in another CubeSat project:

For the past two years, Sabarinathan and her team have been designing, developing and constructing a CubeSat with research partners at Nunavut Arctic College and Canadensys Aerospace Corporation, scheduled for launch in 2022. Ukpik-1, a two-unit CubeSat project outfitted with 360-degree imaging VR cameras and funded by the Canadian Space Agency, will fly to the International Space Station in two years. Next summer’s ‘bonus’ launch provides the team with an unexpected – but most-opportune – test run for its endeavour.

** Imperial College group delivers miniature magnetometer instrument for ESA RadCube mission to study the solar wind: Imperial completes new space mission instrument despite lockdown challenges – Imperial College London

The RadCube mission is designed to test new technologies for monitoring space weather – the variations in the solar wind coming from the Sun, which can disrupt and damage satellites and infrastructure on Earth.

RadCube is a ‘cubesat’ mission, which are designed to use smaller, cheaper and lower-power components than traditional space missions. The technologies in RadCube, if proven to work well in space, could be used in a range of future missions, such as constellations of multiple cubesats working together to measure the solar wind. CubeSat spacecraft are typically constructed upon multiples of 10 × 10 × 10 cm cubes, and RadCube is made up of three of these base units.

Imperial academics and technicians from the Department of Physics this week delivered a miniature magnetometer to the project in Hungary – an instrument that measures the interactions between the Earth’s magnetic field and that carried by the solar wind, which is a major component of space weather monitoring.

Rendering of the RadCube satellite. The MAGIC instrument sits on the end of the boom at the bottom. Credits: Imperial College

The individual detectors on their instrument – called MAGIC (MAGnetometer from Imperial College) – are less than a millimetre in size, and the total instrument sensor is only four centimetres cubed. This is in comparison to the sophisticated magnetometers the lab builds for large and expensive space missions, such as the recent Solar Orbiter mission and the upcoming JUICE mission, which are much larger and weigh a couple of kilograms.

The MAGIC instrument also uses less than a watt of power, compared to up to 20 watts for the larger instruments. While MAGIC is not as sensitive as these larger instruments, as it is much cheaper to build and uses far less power, the technology could be carried on several spacecraft working in tandem. In this way, the lower-quality data is compensated by a much larger volume of data.

The MAGIC (MAGnetometer from Imperial College) for the RadCube spacecraft. Credits: Imperial College

** Update on the UAE MeznSat student satellite: Mini satellite developed by UAE students to launch this month – The National

A miniature satellite developed by university students in the UAE to observe the country’s climate will launch later this month.

MeznSat was funded by the UAE Space Agency and built by engineering and science students at the Khalifa University and American University of Ras Al Khaimah (Aurak).

MeznSat’s initial lift-off was scheduled for the end of 2019, however it was delayed twice and will now blast into the skies on a Soyuz-2b rocket from Russia on September 28.

It is the third miniature satellite – known as a CubeSat – constructed in the Emirates.

See previous postings about the MeznSat project here, here, and here.

** AMSAT news on student and amateur CubeSat/smallsat projects:

ANS-257 AMSAT News Service Special Bulletin

  • Virtual 2020 AMSAT Space Symposium and Annual General Meeting on October 17, 2020
  • AMSAT Virtual Symposium Call for Papers
  • Preparations Continue for World Radiocommunication Conference 2023
  • Changes to AMSAT-NA TLE Distribution for September 10, 2020
  • AMSAT-DL Announces Virtual Satellite Symposium September 26, 2020
  • AMSAT-UK Announces Colloquium 2020 October 11, 2020
  • Upcoming Satellite Operations
  • ARISS News
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts from All Over

ANS-264 AMSAT News Service Special Bulletin

  • AMSAT Board of Directors Elections Results
  • July/August AMSAT Journal Is Now Available
  • RAC Canada 2020 Conference and AGM is this Sunday
  • AO-7 Approaching Return To Full Illumination
  • Changes to AMSAT-NA TLE Distribution
  • Ham Radio Club Talk Collection On YouTube
  • ARISS News
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over

General CubeSat/SmallSat info:

** Sierra Foothills ARC August 2020: Cubesats! The story of the ASU Phoenix Cubesat project

The Sierra Foothills ARC was privileged to have Devon KM6MDG and Trevor KM6MDH talk about their work on the Phoenix Cubesat, AzTechSat-1. The two are graduate students at Arizona State University, and were involved with the program from shortly after conception, through deployment from the International Space Station, to operation afterward. In their talk, they review the objectives of the satellite, talk about its construction and their roles and challenges, and detail its current status.

** Welcome to the Space and Satellite Systems Club [at UC Davis]

The Space and Satellite Systems Club at UC Davis is the premiere space-based engineering club on campus. Our efforts are focused towards developing the skills and technical know-how necessary to design spacecraft by developing, manufacturing, and launching a CubeSat mission to Low-Earth Orbit (LEO). The club focuses on technologies for smaller spacecraft and cube satellites and covers a wide range of research areas from controls and dynamics to sensors, electronics and software. We are currently set to launch our first CubeSat (REALOP) later in 2021. This mission will be a technical demonstration of our in-house developed bus and technological components, the payload on the will serve as an earth sciences mission that will utilize IR and RGB cameras to study the thermal activity of the Earth’s atmosphere from LEO.

** The MILO Space Science Institute: Enabling New, Science-Focused Deep Space Smallsat MissionsThe Global Virtual Workshop I – Stardust-R

** ISS International Space Station Cross Band FM RepeaterTech Minds

Here we take a look at the brand new FM Repeater on board the International Space Station, launched on the 2nd September 2020.

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

Student and amateur CubeSat news roundup – Sept.9.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** USC student team comes out on top in AIAA smallsat competition: USC Wins First Place in the AIAA Small Satellite Student Competition – USC Viterbi School of Engineering

A team of students from the USC Laboratory for Exploration and Astronautical Physics (LEAP), including Robert Antypas and Jeffrey Asher, doctoral students in the Viterbi Department of Astronautical Engineering. The students are working to optimize the design of ionic electrospray thrusters, in-space propulsion devices, in collaboration with the Air Force Research Laboratory (AFRL). These thrusters are small, light and powerful, easy to construct and customizable. These unique aspects contributed to the team winning first place in the AIAA Small Satellite Poster Competition. The students were supervised by Joseph Wang, professor of astronautics and aerospace and mechanical engineering at the USC Viterbi School of Engineering.

Said Asher: “Unlike traditional electric or chemical propulsion technologies, these thrusters are able to scale linearly with the area by increasing the number of emission sites.” In other words, you can increase the level of thrust outputted by increasing the number of emitter tips on the device, a feature not currently possible on other types of propulsion technologies.

Major components of the USC electrospray testbed thruster. Image Credits: Jeffrey Asher.

“The ionic electrospray thruster the team created is an electrostatic propulsion device that operates by extracting and accelerating ions from the propellant using an electric field. The ion extraction is aided by the thruster’s use of a novel liquid propellant, called an ionic liquid. This liquid is highly conductive and freely “gives up” its charge when exposed to an electric field. It also has extremely low vapor pressure, so that it can withstand being directly exposed to the vacuum conditions of space without evaporating.” – USC

** AMSAT news on student and amateur CubeSat/smallsat projects:

ANS-243 AMSAT News Service Special Bulletin

  • AMSAT Member David Minster, NA2AA, Elected ARRL CEO
  • Jeanette Epps, KF5QNU, Joins Starliner Mission To ISS
  • ANS Editors Wanted
  • CubeSat Challenge Seeks To Inspire, Prepare Students
  • Amateur License Fee Proposal From FCC
  • AO-92 (FOX-1D) Reverting to Safe Mode
  • GRBAlpha Frequency Coordination Completed
  • ARISS News
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over

ANS-250 AMSAT News Service Special Bulletin

  • ARISS First Element of the Interoperable Radio System is Operational
  • FCC Notice of Proposed Rulemaking: Proposal open for comment
  • Successful Vega Mission Launches the Amicalsat Project Satellite
  • TEVEL Mission Nears Projected Launch Date
  • Changes to the AMSAT-NA TLE Distribution for September 3, 2020
  • VUCC Satellite Awards and Endorsements
  • ARISS News
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over

General CubeSat/SmallSat info:

** Autonomous deep-space CubeSat: where we are and where we are going – GVWI (The Global Virtual Workshop I – Stardust-R)

** Educational webinars – Session A – Build a Cubesat from scratchSatRevolution

SatRevolution is happy to invite you to a series of informational sessions (only 30 minutes long!), organized by our team and the team of our partners. This webinars has been recorded during Small Sat Conference 2020 this is way session is different in title and during webinars record. For more infromation please visit our website: https://satrevolution.com/

** Ask NMD Episode 1 – Guest, Prof. Jordi Puig-SuariNanosatellite Missions Design

Prof Jordi Puig-Suari is a professor and an aerospace technology developer. He is the co-inventor of the CubeSat standard, and co-founder of Tyvak Nano-Satellite Systems. Prof. Jordi answered 2 questions from the many questions you asked us. The questions were “How did Cubesats begin” and “What is the relationship and collaboration between robotics, AI, software and space exploration”.

** SmallSat Mesh Networking – SmallSat 2020 Webinar – TethersUnlimited – YouTube

** Leveraging the Success of the CubeSat Standard to Create a SmallSat Standard for ESPA SpacecraftEnrico Congiu – YouTube

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

Night sky highlights for September 2020

** What’s Up: September 2020 – Skywatching Tips from NASA JPL

What are some skywatching highlights in September 2020? Spot the Moon together with Mars and Venus, along with the flickering star Fomalhaut, which had itself a planet…until it didn’t! Additional information about topics covered in this episode of What’s Up, along with still images from the video, and the video transcript, are available at https://solarsystem.nasa.gov/whats-up… .

** Tonight’s Sky: SeptemberSpace Telescope Science Institute – YouTube

In September, Pegasus becomes increasingly prominent in the southeastern sky, allowing stargazers to locate globular star clusters and a nearby double star, Alpha Capricorni. Keep watching for space-based views of densely packed, spherical collections of ancient stars in visible and X-ray light.

** What’s in the Night Sky September 2020 Aurora Borealis | Harvest Moon – Alyn Wallace – YouTube

** What to see in the night sky, September 2020BBC Sky at Night Magazine – YouTube

What can you see in the night sky? Astronomers Pete Lawrence and Paul Abel reveal their stargazing tips for September 2020. In 2020 we’re celebrating 15 years of our Virtual Planetarium: https://www.skyatnightmagazine.com/sp…

** Skywatch: What’s happening in the heavens in September – The Washington Post

For September’s night sky, scan the southern heavens to see bright Jupiter and a dim Saturn. You can’t miss these large planets near the constellation Sagittarius.

=== Amazon Ad ===

Xtronaut: The Game of Solar System Exploration

Student and amateur CubeSat news roundup – Aug.25.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** University of Cádiz (UCA) student team developing the UCAnFly cubesat to test space-based gravitational wave detection technologies.

UCAnFly is an educational nanosatellite to test emerging technologies for space-based gravitational wave detectors, such as LISA. The main motivation is to complement academic education at the University of Cádiz (UCA) and transfer knowledge to students in the field of advanced instrumentation and data analysis for Space Sciences. 

The emerging line of research that the UCAnFly project has recently started to conduct at UCA requires engaging and training young researchers with the purpose of creating a group specialized in high precision measurement systems for space missions. This project will open a unique opportunity of novel and valuable experience for the students involved.

UCAnFly is led by a multidisciplinary team at the University of Cádiz, with the support of the Education Office of the European Space Agency, under the educational Fly Your Satellite! programme.

Rendering of the design of the UCAnFly cubesat. Credits: UCA

A video overview:

…The UCAnFly project involves the introduction of a new line of research at the University of Cádiz, which requires engaging and training young researchers with the aim of creating a group specialized in high precision measurement systems for space missions. For this reason, in addition to the mission objectives, one of the main motivations of the project is to complement academic education and transfer knowledge in the field of advanced instrumentation and data analysis for space applications to undergraduate and doctoral students…

** Virginia high school team building TJ REVERB cubesat to compare smallsat radio communications systems. The project won a ride to space via NASA’s CubeSat Launch Initiative.

The TJ REVERB project is creating a best practice document for building a Nanosatellite while building a 2U CubeSat that compares multiple radio systems in Lower Earth Orbit. Additionally, TJ REVERB serves as an educational vehicle for teaching students the principles of systems engineering. Beyond the rich learning experience designing and constructing a satellite provides the students at Thomas Jefferson HSST, the team is committed to a robust local, national, and international outreach program.

There is a GoFundMe to raise funds to expand the smallsat program and their outreach activities to other high schools: Fundraiser for US STEM FOUNDATION by TJ REVERB : TJREVERB Cubesat for TJHSST

Latest updates at Cool Cube (@CoolCube10) / Twitter. Find videos posted by the students at Cool Cube – YouTube, e.g.

** AMSAT news on student and amateur CubeSat/smallsat projects: ANS-236 AMSAT News Service Special Bulletin

  • Ballot Return Date is September 15
  • Two-Minute Engineering Video Update Available
  • New Distance Records
  • ORI’s Digital Microwave Broadband Communication System Determined to be Free of ITAR
  • SmallSat 2020 Virtual Conference Proceedings Available Online
  • Upcoming Satellite Operations
  • ARISS News
  • Satellite Shorts from All Over

General CubeSat/SmallSat info:

** Students Use Ham Radio to Call an Astronaut in Space – NASA Johnson

On May 15, 2020, Canadian students used ham radio to talk with NASA astronaut Chris Cassidy, currently aboard the International Space Station. Thanks to ham radio operators and the International Space Station program, the students were able to participate from their homes. Learn more about ham radio aboard the space station: https://go.nasa.gov/2DRPAeK Learn more about the research being conducted on station: https://www.nasa.gov/iss-science

** What is a CubeSat?Cool Cube

CubeSats are driving space exploration! In this video, by students for students, we go over what they are and some major components that are typically on board! Please stick along for the rest of this series, where we’ll go over the ins and outs of satellite development!

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction