Videos: “Space to Ground” ISS report – May.1.2020

Here is the latest episode in NASA’s Space to Ground weekly report on activities related to the International Space Station:

** NASA Astronaut Chris Cassidy Speaks with NASA Interns – April 28, 2020

** #NASAatHome: Spaceport Series Episode 10: America’s return to human spaceflight

A new era of human spaceflight is set to begin as American astronauts once again launch on an American rocket from American soil to the International Space Station as part of NASA’s Commercial Crew Program. Hear from two subject matter experts as they discuss the mission set to launch May 27.

** Progress MS-14 docking to the ISS – SciNews

The Progress MS-14 spacecraft automatically docked to the Earth-facing port of the Zvezda Service Module on the Russian segment of the International Space Station 25 April 2020, 05:12 UTC (01:12 EDT). ISS Progress 75 mission was launched by a Soyuz-2.1a launch vehicle on 25 April 2020, at 01:51 UTC (07:51 local time; 24 April, 21:51 EDT) from the Baikonur Cosmodrome in Kazakhstan. The spacecraft will remain docked at the ISS for more than seven months, departing in December 2020.

== Amazon Ad ==

Outpost in Orbit:
A Pictorial & Verbal History of the Space Station

Space Songs – Live concert from Air & Space Museum

The Smithsonian Air & Space Museum is hosting an online space music event tonight at 8:00 pm EDT: Space Songs: Through the Distance

Join the National Air and Space Museum Thursday, April 30 at 8 pm EDT for a YouTube concert event, sharing songs about space and isolation to celebrate how extreme situations can bring out the very best in us all and why there’s no challenge we can’t face together. This recorded concert, hosted by Tested’s Adam Savage, will feature special guests and performances by Sting, Clipping, Bethany Cosentino of Best Coast, Dan Deacon, Ben Gibbard of Death Cab for Cutie, Valerie June, Lukas Nelson, Grace Potter, and Vagabon.

We know that people love space. And it’s not just because of Moon rocks and pretty pictures of the cosmos. Space exploration is an extraordinary expression of humanity and can inspire us like nothing else.

Naturally, there are a lot of great songs about spaceships and astronauts—about ordinary people in extraordinary circumstances And many artists use solitude to fuel creativity and experimentation. We could all use a little bit of that inspiration right now. So while our museum remains closed to the public, we want to share some songs that inspire us with viewers at home.

=== Amazon Ad ===

See You In Orbit?:
Our Dream Of Spaceflight

Student and amateur CubeSat news roundup – April.29.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** Quetzal-1 CubeSat, developed at the University del Valle de Guatemala, was deployed into orbit from the ISS yesterday.  The project was sponsored by  KiboCUBE, a collaboration of the Japanese space program JAXA and United Nations Office for Outer Space Affairs (UNOOSA). Guatemala launches Quetzal-1 cube satellite through UNOOSA and JAXA KiboCUBE programme – Univ. Vienna .

Deployement of Guatemala’s Quetzal-1 cubesat from the Japanese Kibo module on the ISS. Credits: JAXA

The satellite – Quetzal-1 – is Guatemala’s first and will unlock new possibilities for the country and help achieve the United Nations Sustainable Development Goals (SDGs). The primary objective of the mission is to test a multispectral sensor to acquire remote sensing data for natural resource management. The sensor could be used to monitor water quality in inland water bodies, helping to achieve SDG Goal 6 – clean water and sanitation.

The project supports SDG Goal 9 – industry, innovation and infrastructure – helping Guatemala develop its capacities in aerospace engineering and sparking innovations, such as the sensor created for the satellite. Women were an integral part of the winning team that engineered the satellite, contributing to SDG Goal 5 – gender equality.

The project has been made possible thanks to the strong collaboration of several entities: UNOOSA, JAXA, UVG, the UK Space Agency, the University of Colorado, the University of Chile, TEC Costa Rica, and the University of Würzburg among others. This is in line with SDG 17, partnership for the goals: international collaboration can unlock new frontiers in leveraging space for development.

The KiboCUBE programme offers the opportunity for institutions from developing countries to develop a cube satellite to be deployed from the ISS Japanese Experiment Module (Kibo). The programme, which recently completed its fifth round, enabled Kenya to deploy their first satellite in 2018, 1KUNS-PF, developed by a team from the University of Nairobi.

Views of the deployment:

Updates and further info about the project:

** Berkeley student-built QubeSat to test quantum gyroscope in orbit. The CubeSat project was selected by NASA’s CubeSat Launch Initiative for launch in 2021: Students’ shoebox-sized satellite gets green light for launch | Berkeley News

“The NASA grant is just for the launch, so we have still got to supply and manufacture the satellite ourselves,” said [Paul] Kӧttering, a junior majoring in applied mathematics and physics. “Luckily, the cost of CubeSats has dropped significantly over the past three to four years. The communications systems, power systems, control systems — a lot of those are just off-the-shelf, commercial parts, so they are quite cheap. The payload itself is the more expensive item, but again, a lot of that comes from in-kind donations from companies.”

Called QubeSat, or quantum CubeSat, the group’s satellite will test a new type of gyroscope based on quantum mechanical interactions in imperfect diamonds. The diamond gyroscope was invented in the UC Berkeley laboratory of physicist Dmitry Budker, a Professor of the Graduate School who is now also at the Helmholtz Institute at Johannes Gutenberg University in Mainz, Germany.

The student team is part of an undergraduate aerospace club called Space Technologies at Cal (STAC) that has already flown experiments aboard balloons and the International Space Station — an impressive record for a group that started only four years ago. Some of the group’s graduates have gone on to work for SpaceX, Boeing and other aerospace companies.

Boasting about 65 members from a range of majors, including physics, math, engineering, chemistry and environmental sciences, they’re currently working on four projects they hope will push innovative new space technologies.

“The NV-diamond, a quantum gyroscope, will sit in the middle of the magnetic coils, which will be encased in a box that blocks outside magnetic fields, which would interfere with the measurements. (Diagram by STAC team)”. Credits: STAC & Berkeley News

** Washington State University student-built CougSat-1 will study plant germination in microgravity. The Cougs in Space student organization is developing the CubeSat, the first for WSU to go to space. Cougs in Space prepare satellite – The Daily Evergreen

Teams from Cougs in Space are working together to build a satellite that will be launched from the International Space Station by this October. 

Mathew Bauer, junior computer science major and president of Cougs in Space, said the satellite is a 10-centimeter cube, or “CubeSat.” It will contain cameras to monitor conditions and pea seeds germinating, which means growing in an internal chamber. 

“The germination of pea seeds, the germination of seeds in general, is something that has never really been done outside of the International Space Station,” Bauer said. “They’ve never seen how seeds react in space.”

Bauer said Cougs in Space has been building the satellite for about one and a half to two years.

There are many teams responsible for different parts of the satellite, he said. The structure team builds the body of the satellite, the payload team is responsible for the pea seeds and the germination chamber and the communication team will receive data from the satellite when it is in space. Other teams are responsible for electrical systems, computing and controls, among other functions.

CougSat-1 CubeSat. Credits: Cougs in Space.

CougSat-1 will got to the ISS aboard a Cargo Dragon this fall and be deployed into orbit via Nanoracks.

Find updates at Cougs in Space (@cougsinspace) / Twitter

** AMSAT news on student and amateur CubeSat/smallsat projects: ANS-117 AMSAT News Service Special Bulletin

  • March/April 2020 Edition of Apogee View Posted
  • Long-Lost U.S. Military Satellite Found By Amateur Radio Operator
  • Let’s Take Some Pictures
  • Changes to AMSAT-NA TLE Distribution
  • The W4AMI Award and How to Obtain One
  • New OSCAR T-Shirt Available from AMSAT Zazzle Store
  • Upcoming Satellite Operations
  • ARISS News
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over

General CubeSat/SmallSat info:

** Terran Space Technologies presentation at NewSpace Pitch in Singapore last year: Singapore’s Infinite Orbits wins NewSpace Pitch at APSCC2019 | SpaceTech Asia

** Polaris: Machine Learning for Satellites:

A presentation on Polaris (https://polarisml.space), an open source Python project to apply machine learning to satellite telemetry. This presentation was supposed to be given at the 2020 Cubesat Developer’s Workshop (https://www.cubesat.org/workshop-info… the workshop was cancelled because of COVID-19, but the organizers have allowed us to record our presentations for the archive. Links: – The Polaris project can be found here: https://polarisml.space – The slides for this presentation can be found here: https://drive.google.com/file/d/1H4UF… – The demo shown in this video can be found here: https://deepchaos.spac

== Amazon Ad ==

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

NIAC project aims to image exoplanets with solar gravity lens system enabled by advanced solar sail

Xplore sent me this press release:

NASA $2M Grant Advances Study to Directly Image Exoplanets Light Years Away
Xplore’s Advanced Solar Sail Design will be the Fastest Spacecraft Ever Made,
Expanding Xplore’s Reach Beyond the Inner Solar System

Xplore Inc., a commercial space exploration company providing Space as a Service™ today announced they and their teammates won a NASA Innovative Advanced Concepts (NIAC) Phase III award for a two-year, $2M NASA grant to further mature the Solar Gravity Lens Focus (SGLF) architecture to image planets in orbit around distant stars starting with a Technology Demonstration Mission (TDM). Dr. Slava G. Turyshev, a NIAC Fellow and Senior Research Scientist at NASA’s Jet Propulsion Laboratory (JPL) is the Principal Investigator leading the SGLF mission which includes Xplore, JPL and The Aerospace Corporation. The SGLF mission study is only the third Phase III award granted in the NIAC program ever.

Xplore’s Advanced Solar Sail for NASA’s Solar Gravity Lens Focus Mission, visualization by Bryan Versteeg, SpaceHabs.com

Reaching the focus region where the Sun’s gravity acts like a magnifying lens to the background sky is an immense technological challenge. This region, the SGLF, is over 500 times the distance between Earth and the Sun (547 AU). One Astonomical Unit (AU) is the distance from Earth to the Sun, about 93 million miles (149.5 million km). Even by using our fastest deep space probe, Voyager 1, moving at 11 miles/s (17 km/s) it will take over 150 years to reach just the edge of the SGLF region.

During the previous two NIAC phases nearly every credible propulsion technology was assessed to not only accurately navigate across this vast distance, but also to communicate and operate once at the SGLF — all within a goal of 25 years from launch. To reach the SGLF on a timescale of 25 years requires a propulsion system capable of accelerating a spacecraft to a speed seven times faster than Voyager 1 (> 20 AU/yr or 100 km/s). The resulting propulsion technology was found to meet both the high speed requirement and the proposed architecture of sending many vehicles to the SGLF. This propulsion does not exploit chemical or nuclear reactions, but simply harnesses sunlight reflecting from a solar sail.

As a key enabler for the SGLF mission, Xplore will design the spacecraft for the SGLF’s Technology Demonstration Mission (TDM). The TDM vehicle as pictured is an advanced solar sail design based upon L’Garde’s SunVane concept. The SunVane concept addresses the control, packaging and scalability challenges of traditional large planar solar sails by breaking up the required overall sail area into smaller rotatable vanes distributed across a lightweight truss. Xplore will transition this concept to a prototype design as a first step toward demonstrating the key technologies necessary to achieve the SGLF mission. The goal for the Xplore TDM vehicle using current technologies is to reach speeds in excess of two to three times that of Voyager 1 (5-8 AU/year). At these unprecedented speeds it would allow the TDM vehicle to reach Jupiter in less than a year and Saturn in two years.

Xplore Founder Lisa Rich said,

“Xplore is laying the groundwork to revolutionize the transit speed to destinations in our solar system, and beyond. Once Xplore completes the design, build and first flight of the TDM vehicle, the company would accelerate these missions — perhaps sending one per year, to rapidly advance solar system exploration while providing fast reaction options for flybys of newly-discovered interstellar objects like Oumuamua and high energy intercepts for planetary defense.”

The TDM will enable rapid transit to dramatically transform and ease the exploration of the outer solar system and Kuiper belt objects. At 5-8 AU per year, the TDM vehicle’s extraordinary speed will allow it to reach Voyager in 20 years. To put these distances into perspective, New Horizons launched in 2006 and thirteen years later performed the first flyby of Ultima Thule, a distant Kuiper Belt object that lies 1 billion miles (1.6 billion km) beyond Pluto.

Alan Stern, planetary scientist, Associate Vice President of the Southwest Research Institute and the Principal Investigator on New Horizons mission to Pluto said,

“This is an incredible mission with incredible technology. I am incredibly excited to see it selected for study by NIAC. SGLF offers to revolutionize both exoplanet science and propulsion technology if implemented.”

The design of the TDM spacecraft is led by Xplore Founder and Chief Technology Officer, Dr. Darren Garber, who helped develop L’Garde’s SunVane concept and provided operational support to LightSail. Dr. Garber will coordinate with JPL and Aerospace team members to ensure that the TDM vehicle’s design and future flight will represent the next step toward traversing 500 AU in 25 years or less.

Dr. Louis D. Friedman, Xplore Advisor and Co-Founder of The Planetary Society, worked on numerous flagship missions including Mariner, Voyager, Magellan and the Mars Program. A well-known champion of the Halley’s Comet Rendezvous-Solar Sail project back in the 70s with Dr. Carl Sagan, Dr. Friedman said,

“I’m proud that Xplore, led by our colleague Dr. Slava Turyshev, will advance the vision for space exploration Carl Sagan and I put in motion many years ago. The ability to harness the power of the Sun to rapidly transit to distant corners of our universe is a groundbreaking effort that will impact the science community for generations.”

Xplore’s team is comprised entirely of experienced U.S. space professionals who have supported all aspects of the design, development and operations of advanced technology missions for commercial, civil and national security space customers.

For the TDM, Dr. Garber and Xplore’s advanced engineering team will leverage key components, software and system engineering processes employed for its Xcraft™, a high-performance, ESPA-class, multi-mission spacecraft uniquely designed for missions in the inner solar system with a planned lunar radar mapping mission in early 2022. Their expertise will further define the SGLF Phase III study mission and architecture analysis such as using clusters of follow-on TDM vehicles to collectively mitigate risk and lower total system cost. Multiple mass-produced TDM spacecraft offer resiliency and scalability for a future decades-long mission, and the concept could allow other partners to contribute their own set of clustered spacecraft to cooperatively operate during the journey to the solar gravitational lens region in deep space.

Solar Gravity Lens Concept Receives $2M NASA Grant for Technology Maturation.
Aerospace Corp.

Lisa Rich said,

“Designing the fastest object ever made in the history of humanity is a challenge worthy of the legacy of Carl Sagan, and we look forward to advancing solar sail technologies with our Advisor, Dr. Lou Friedman. SGLF aligns with Xplore’s long-term vision for frequent, low-cost commercial missions to deep space. The ability to rapidly travel anywhere in the solar system expands our human footprint and will open up new avenues for scientific exploration.”

About Xplore Inc.: Xplore is a Seattle-based company offering Space as a Service™. Xplore provides hosted payloads, communication relay services and exclusive datasets to its customers via the Xcraft™, the company’s multi-mission spacecraft. Xplore’s mission is to expand robotic exploration via commercial missions at and beyond Earth, to the Moon, Mars, Venus, Lagrange points and near-Earth asteroids for national space agencies, national security agencies, sovereign space agencies and universities.

===

See also

=== Amazon Ad ===

Xtronaut: The Game of Solar System Exploration

Space policy roundup – April.28.2020

A sampling of links to recent space policy, politics, and government (US and international) related space news and resource items that I found of interest (find previous space policy roundups here):

Webcasts:

** Episode 14 United Arab Emirates Domestic Space Law – Michael Listner, Space Law & Policy Solutions

** The Space Show – Fri, 04/24/2020Dr. Deana Weibel discussed “space tourism, all from the perspective of religion, spiritualism, faith, and anthropology”.

** Webinar | Space Force Gets Down to Business – SpaceNews.com

Since its creation just four months ago, the U.S. Space Force has been working to define its priorities, capabilities and culture. As planning continues to stand up new organizations and recruit talent, one key effort has been the development of an acquisition strategy to build the next generation of military space systems.

Questions explored in this webinar:

    • What are the Space Force’s next steps in its organization?
    • What has been the impact of COVID-19 on Space Force planning and operations?
    • What are the Space Force’s proposals to change the acquisition system?
    • What personnel, resource and budget challenges does the Space Force face going forward?
    • With growing threats in space, what does the Space Force have to do to build more resilient and defendable space systems?

** Large Constellation Disposal Hazards (with Bill Ailor)Space Policy Show/Aerospace Corp.

**  Whither Human Spaceflight (with James Vedda and John Logsdon)Space Policy Show/Aerospace Corp.

** April 24, 2020 Zimmerman/Batchelor podcast | Behind The Black

==

=== Amazon Ad ===

Rise of the Space Age Millennials:
The Space Aspirations of a Rising Generation

Everyone can participate in space