Carnival of Space #590 – Universe Today

Universe Today hosts the latest Carnival of Space.

Illustration of White Dwarf Accretion. Credit: NASA/CXC/Texas Tech/T. Maccarone Illustration: ASA/CXC/M. Weiss

Student and amateur CubeSat news roundup – Dec.11.2018

A sampling of recent articles, press releases, etc. about student and amateur CubeSat / SmallSat projects and programs:

** How Beanie Babies helped UNCW reach space – WRAL.com

On Tuesday, December 4, UNC Wilmington successfully launched their 3U CubeSat, about the size of a loaf of bread, Seahawk-1, along with 48 other CubeSats aboard a SpaceX Falcon 9 rocket from Vandenberg Air Force Base in California. Seahawk-1 is now in a sun-synchronous low Earth orbit studying oceans via the HawkEye Ocean Color Imager. Study of ocean color assists the better understanding everything from plankton populations to the degradation of coral reefs to the effects of El Niño. The sun-synchronous orbit allows researchers to monitor day to day changes, imaging a swath of ocean  230 km wide down to a resolution of 120m wide.

“Landsat ocean color images traditionally cost about $1,000 each, and UNCW’s will be free to everybody.” said UNCW Center for Marine Science Professor John M. Morrison. “The data collected will improve our ability to monitor coastal environments where anthropogenic stresses like ‘red tides’ are often most acute

** Project DaVinci cube satellite to launch on Wednesday – The Coeur d’Alene Press

A team of North Idaho STEM Charter Academy students is about to land among the stars.

While the rest of the world is counting down to a new year, the Project DaVinci team is counting down to 8 p.m. Wednesday, when the cube satellite (CubeSat) the students have been working on for two years will launch into space on an electron rocket from a Rocket Lab ground station in New Zealand.

“It’s finally becoming reality,” project co-lead and ground communications lead Samantha Schroeder, a freshman, said during a team meeting at the school. “It’s very exciting.”

** USI student-built UNITE CubeSAT successfully launched, en route to International Space Station – University of Southern Indiana

After years of planning, construction and testing, the UNITE CubeSAT, a small research satellite designed and built entirely by USI undergraduate students under the direction of Dr. Glenn Kissel, associate professor of engineering, was launched into space on Wednesday, December 5 aboard a SpaceX Dragon cargo ship bound for the International Space Station. When it is launched from the ISS in 2019, it will be the first deployed satellite created by an Indiana higher education institution.

** Jordan launches first cube satellite JY1 – SatellitePro ME

The satellite was designed and built by 18 engineering students, with support from five academics and consultants, in various engineering fields, from Jordanian universities.

The CPF [Crown Prince Foundation] said the Masar team will launch a mobile application that will enable users to track the Jordanian mini satellite and communicate with it.

** AMSAT news on student and amateur CubeSat/smallsat projects: ANS-343 AMSAT News Service Special Bulletin

  • Fox-1Cliff/AO-95 Commissioning Status
  • Fox-1Cliff Launched, Initial Telemetry Received
  • Fox-1Cliff Designated AMSAT-OSCAR 95 (AO-95)
  • ExseedSat Granted VO-96 OSCAR Number
  • JY1Sat Now Jordan-OSCAR 97 (JO-97)
  • Remind Me Again? What is Going On With Fox-1Cliff?
  • Updates to AMSAT-NA TLE Distribution for 12-6-2018
  • Changes to FUNcube Warehouses
  • RadFxSat-2 / Fox-1E Launch Date NET March 2019
  • Satellites Activation From The Queen Mary On December 15
  • Help Wanted: Radio Amateurs Requested to Monitor Cubesat Downlinks
  • KG5FYI and RN3DX Join KG5TMT and KF5ONO Aboard the ISS
  • AMSAT Web Adds Donation Portal
  • Upcoming Satellite Operations
  • ARISS News
  • Shorts From All Over

General CubeSat/SmallSat info:

====

Check out the Best Selling Electronics at Amazon

The Space Show this week – Dec.10.2018

The guests and topics of discussion on The Space Show this week:

1. Monday, Dec. 10, 2018; 2-3:30 pm PST (4-5:30 pm CST, 5-6:30 pm EST): We welcome Dr. Abraham (Avi) Loeb from the Harvard Smithsonian Center for Astrophysics regarding OUMUAMUA, Interstellar Objects, and more.

2. Tuesday, Dec. 11, 2018: 7-8:30 pm PST (9-10:30 pm CST, 10-11:30 pm EST): We welcome back Dr. Christopher Morrison on space nuclear power, propulsion, space radiation, and much more.

3. Wednesday, Dec. 12, 2018: Hotel Mars. See Upcoming Show Menu and the website newsletter for details. Hotel Mars is pre-recorded by John Batchelor. It is archived on The Space Show site after John posts it on his website.

4. SPECIAL TIME: Friday, Dec. 14, 2018: 12 pm PST (2 pm CST, 3 pm EST). We welcome former NASA chief technologist Dr. Robert Braun, now at the University of Colorado at Boulder.

5. Sunday, Dec. 16, 2018: 12-1:30 pm PST, (3-4:30 pm EST, 2-3:30 pm CST): We welcomed back Michael Listner for the year 2018 and the space law overview.

See also:
* The Space Show on Vimeo – webinar videos
* The Space Show’s Blog – summaries of interviews.
* The Space Show Classroom Blog – tutorial programs

The Space Show is a project of the One Giant Leap Foundation.

The Space Show - David Livingston
The Space Show – David Livingston

Some recent Space Show programs:

** Fri, 12/07/2018 – Dr. George Fox discussed “hardy Earth organisms survive mission sterilization, humans to Mars, Planetary Protection, the lunar environment, RNA sequencing, and more”.

** Sun, 12/09/2018Dr. Brian Weeden and Dr. Namrata Goswami discussed the issues involved with the creation of a new U.S. Space Force.

** Tue, 12/04/2018 – Douglas Messier gave “an overview review and look at the commercial and global space industry for 2018 plus a look ahead to 2019”.

Space policy roundup – Dec.10.2018

A sampling of links to recent space policy, politics, and government (US and international) related space news and resource items that I found of interest:

Webcasts:

** The Space Show – Fri, 12/07/2018 – Dr. George Fox discussed “hardy Earth organisms survive mission sterilization, humans to Mars, Planetary Protection, the lunar environment, RNA sequencing, and more”.

** Dr. Robert Zubrin – Why a lunar base is better than LOP-G – 21st Annual Mars Society Convention

Voyager 2 reaches interstellar space

NASA’s Voyager 2 spacecraft, launched in 1977, joins Voyager 1 in leaving the Sun’s heliosphere and entering interstellar space:

NASA’s Voyager 2 Probe Enters Interstellar Space

For the second time in history, a human-made object has reached the space between the stars. NASA’s Voyager 2 probe now has exited the heliosphere – the protective bubble of particles and magnetic fields created by the Sun.

Members of NASA’s Voyager team will discuss the findings at a news conference at 11 a.m. EST (8 a.m. PST) today at the meeting of the American Geophysical Union (AGU) in Washington. The news conference will stream live on the agency’s website.

Comparing data from different instruments aboard the trailblazing spacecraft, mission scientists determined the probe crossed the outer edge of the heliosphere on Nov. 5. This boundary, called the heliopause, is where the tenuous, hot solar wind meets the cold, dense interstellar medium. Its twin, Voyager 1, crossed this boundary in 2012, but Voyager 2 carries a working instrument that will provide first-of-its-kind observations of the nature of this gateway into interstellar space.

This illustration shows the position of NASA’s Voyager 1 and Voyager 2 probes, outside of the heliosphere, a protective bubble created by the Sun that extends well past the orbit of Pluto. Credits: NASA/JPL-Caltech

Voyager 2 now is slightly more than 11 billion miles (18 billion kilometers) from Earth. Mission operators still can communicate with Voyager 2 as it enters this new phase of its journey, but information – moving at the speed of light – takes about 16.5 hours to travel from the spacecraft to Earth. By comparison, light traveling from the Sun takes about eight minutes to reach Earth.

The most compelling evidence of Voyager 2’s exit from the heliosphere came from its onboard Plasma Science Experiment (PLS), an instrument that stopped working on Voyager 1 in 1980, long before that probe crossed the heliopause. Until recently, the space surrounding Voyager 2 was filled predominantly with plasma flowing out from our Sun. This outflow, called the solar wind, creates a bubble – the heliosphere – that envelopes the planets in our solar system. The PLS uses the electrical current of the plasma to detect the speed, density, temperature, pressure and flux of the solar wind. The PLS aboard Voyager 2 observed a steep decline in the speed of the solar wind particles on Nov. 5. Since that date, the plasma instrument has observed no solar wind flow in the environment around Voyager 2, which makes mission scientists confident the probe has left the heliosphere.

“Working on Voyager makes me feel like an explorer, because everything we’re seeing is new,” said John Richardson, principal investigator for the PLS instrument and a principal research scientist at the Massachusetts Institute of Technology in Cambridge. “Even though Voyager 1 crossed the heliopause in 2012, it did so at a different place and a different time, and without the PLS data. So we’re still seeing things that no one has seen before.”

In addition to the plasma data, Voyager’s science team members have seen evidence from three other onboard instruments – the cosmic ray subsystem, the low energy charged particle instrument and the magnetometer – that is consistent with the conclusion that Voyager 2 has crossed the heliopause. Voyager’s team members are eager to continue to study the data from these other onboard instruments to get a clearer picture of the environment through which Voyager 2 is traveling.

“There is still a lot to learn about the region of interstellar space immediately beyond the heliopause,” said Ed Stone, Voyager project scientist based at Caltech in Pasadena, California. 

Together, the two Voyagers provide a detailed glimpse of how our heliosphere interacts with the constant interstellar wind flowing from beyond. Their observations complement data from NASA’s Interstellar Boundary Explorer (IBEX), a mission that is remotely sensing that boundary. NASA also is preparing an additional mission – the upcoming Interstellar Mapping and Acceleration Probe (IMAP), due to launch in 2024 – to capitalize on the Voyagers’ observations.

“Voyager has a very special place for us in our heliophysics fleet,” said Nicola Fox, director of the Heliophysics Division at NASA Headquarters. “Our studies start at the Sun and extend out to everything the solar wind touches. To have the Voyagers sending back information about the edge of the Sun’s influence gives us an unprecedented glimpse of truly uncharted territory.”

While the probes have left the heliosphere, Voyager 1 and Voyager 2 have not yet left the solar system, and won’t be leaving anytime soon. The boundary of the solar system is considered to be beyond the outer edge of the Oort Cloud, a collection of small objects that are still under the influence of the Sun’s gravity. The width of the Oort Cloud is not known precisely, but it is estimated to begin at about 1,000 astronomical units (AU) from the Sun and to extend to about 100,000 AU. One AU is the distance from the Sun to Earth. It will take about 300 years for Voyager 2 to reach the inner edge of the Oort Cloud and possibly 30,000 years to fly beyond it.

The Voyager probes are powered using heat from the decay of radioactive material, contained in a device called a radioisotope thermal generator (RTG). The power output of the RTGs diminishes by about four watts per year, which means that various parts of the Voyagers, including the cameras on both spacecraft, have been turned off over time to manage power.

“I think we’re all happy and relieved that the Voyager probes have both operated long enough to make it past this milestone,” said Suzanne Dodd, Voyager project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “This is what we’ve all been waiting for. Now we’re looking forward to what we’ll be able to learn from having both probes outside the heliopause.”

Voyager 2 launched in 1977, 16 days before Voyager 1, and both have traveled well beyond their original destinations. The spacecraft were built to last five years and conduct close-up studies of Jupiter and Saturn. However, as the mission continued, additional flybys of the two outermost giant planets, Uranus and Neptune, proved possible. As the spacecraft flew across the solar system, remote-control reprogramming was used to endow the Voyagers with greater capabilities than they possessed when they left Earth. Their two-planet mission became a four-planet mission. Their five-year lifespans have stretched to 41 years, making Voyager 2 NASA’s longest running mission.

The Voyager story has impacted not only generations of current and future scientists and engineers, but also Earth’s culture, including film, art and music. Each spacecraft carries a Golden Record of Earth sounds, pictures and messages. Since the spacecraft could last billions of years, these circular time capsules could one day be the only traces of human civilization.

Voyager’s mission controllers communicate with the probes using NASA’s Deep Space Network (DSN), a global system for communicating with interplanetary spacecraft. The DSN consists of three clusters of antennas in Goldstone, California; Madrid, Spain; and Canberra, Australia.

The Voyager Interstellar Mission is a part of NASA’s Heliophysics System Observatory, sponsored by the Heliophysics Division of NASA’s Science Mission Directorate in Washington. JPL built and operates the twin Voyager spacecraft. NASA’s DSN, managed by JPL, is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. The network also supports selected Earth-orbiting missions. The Commonwealth Scientific and Industrial Research Organisation, Australia’s national science agency, operates both the Canberra Deep Space Communication Complex, part of the DSN, and the Parkes Observatory, which NASA has been using to downlink data from Voyager 2 since Nov. 8.

For more information about the Voyager mission, visit: https://www.nasa.gov/voyager

More information about NASA’s Heliophysics missions is available online at: https://www.nasa.gov/sunearth