Category Archives: Pluto and beyond

Video: Fly over Pluto and its largest moon Charon

Created from imagery and elevation data from the New Horizon probe‘s fly-by of the Pluto system in July of 2015, the videos below show what it would look like to fly low over Pluto and  its biggest moon Charon:

NASA Video Soars over Pluto’s Majestic Mountains and Icy Plains

In July 2015, NASA’s New Horizons spacecraft sent home the first close-up pictures of Pluto and its moons – amazing imagery that inspired many to wonder what a flight over the distant worlds’ icy terrain might be like.

Wonder no more. Using actual New Horizons data and digital elevation models of Pluto and its largest moon Charon, mission scientists have created flyover movies that offer spectacular new perspectives of the many unusual features that were discovered and which have reshaped our views of the Pluto system – from a vantage point even closer than the spacecraft itself.

This dramatic Pluto flyover begins over the highlands to the southwest of the great expanse of nitrogen ice plain informally named Sputnik Planitia. The viewer first passes over the western margin of Sputnik, where it borders the dark, cratered terrain of Cthulhu Macula, with the blocky mountain ranges located within the plains seen on the right. The tour moves north past the rugged and fractured highlands of Voyager Terra and then turns southward over Pioneer Terra — which exhibits deep and wide pits — before concluding over the bladed terrain of Tartarus Dorsa in the far east of the encounter hemisphere.

The equally exciting flight over Charon begins high over the hemisphere New Horizons saw on its closest approach, then descends over the deep, wide canyon of Serenity Chasma. The view moves north, passing over Dorothy Gale crater and the dark polar hood of Mordor Macula. The flight then turns south, covering the northern terrain of Oz Terra before ending over the relatively flat equatorial plains of Vulcan Planum and the “moated mountains” of Clarke Montes.

The topographic relief is exaggerated by a factor of two to three times in these movies to emphasize topography; the surface colors of Pluto and Charon also have been enhanced to bring out detail.

Digital mapping and rendering were performed by Paul Schenk and John Blackwell of the Lunar and Planetary Institute in Houston. All feature names in the Pluto system are informal.

Video: New Horizons bring you in for a ‘landing’ on Pluto

In this video, color corrected images from the New Horizons probe are presented in sequence to bring you closer and closer to the surface of Pluto: A Colorful ‘Landing’ on Pluto – New Horizons

From the caption:

What would it be like to actually land on Pluto? This movie was made from more than 100 images taken by NASA’s New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. The video offers a trip down onto the surface of Pluto — starting with a distant view of Pluto and its largest moon, Charon — and leading up to an eventual ride in for a “landing” on the shoreline of Pluto’s informally named Sputnik Planitia.

To create a movie that makes viewers feel as if they’re diving into Pluto, mission scientists had to interpolate some of the panchromatic (black and white) frames based on what they know Pluto looks like to make it as smooth and seamless as possible. Low-resolution color from the Ralph color camera aboard New Horizons was then draped over the frames to give the best available, actual color simulation of what it would look like to descend from high altitude to Pluto’s surface.

After a 9.5-year voyage covering more than three billion miles, New Horizons flew through the Pluto system on July 14, 2015, coming within 7,800 miles (12,500 kilometers) of Pluto. Carrying powerful telescopic cameras that could spot features smaller than a football field, New Horizons sent back hundreds of images of Pluto and its moons that show how dynamic and fascinating their surfaces are. Credits: NASA/JHUAPL/SwRI

The original black-and-white “landing” movie can be viewed at:
http://pluto.jhuapl.edu/News-Center/N…

====

New Horizons: Looking back on the flyby + Video simulates a landing on Pluto

It’s been a year since the New Horizons probe flew past Pluto and its moons. Here is a review of the flyby and the major findings by the mission: Looking Back, a Year after Pluto – New Horizons.

Fly down to near the surface in a new video from New Horizons:

Video: Imagine a Landing on Pluto

Imagine a future spacecraft following New Horizons’ trailblazing path to Pluto, but instead of flying past its target – as New Horizons needed to do to explore Pluto and the Kuiper Belt beyond – the next visitor touches down near the tall mountains on the frozen icy, plains of Pluto’s heart.

No need to wait for that far off trip, though, thanks to new video produced by New Horizons scientists that offers that very perspective. Made from more than 100 New Horizons images taken over six weeks of approach and close flyby, the video offers a trip in to Pluto – starting with a distant spacecraft’s-eye view of Pluto and its largest moon, Charon, to an eventual ride in for a “landing” on the shoreline of Pluto’s informally named Sputnik Planum.

“Just over a year ago, Pluto was a dot in the distance,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute, Boulder, Colorado. “This video shows what it would be like to ride aboard an approaching spacecraft and see Pluto grow to become a world, and then to swoop down over its spectacular terrains as if we were approaching some future landing on them!”

[Constantine Tsang, a New Horizons scientist at SwRI who worked with Stern to create the movie, said]:

“The challenge in creating this movie is to make it feel like you’re diving into Pluto,” … “We had to interpolate some of the frames based on we know Pluto looks like to make it as smooth and seamless as possible. It’s certainly fun to see this and think what it would feel like to approach a landing on Pluto!”

After a 9.5-year voyage covering more than three billion miles, New Horizons flew through the Pluto system on July 14, 2015, coming within 7,800 miles (12,500 kilometers) of Pluto itself. Carrying powerful telescopic cameras that could spot features smaller than a football field, New Horizons has sent back hundreds of images of Pluto and its moons that show how dynamic and fascinating their surfaces are – and what great targets they’d make for follow-up mission one day.

New Horizon: ‘Halo’ craters on Pluto covered in methane and water ices

Newly released images from the New Horizon fly-by of Pluto last summer:

Pluto’s ‘Halo’ Craters

Within Pluto’s informally named Vega Terra region is a field of eye-catching craters that looks like a cluster of bright halos scattered across a dark landscape.

Halo_context-scale_20160421[1]Larger image

The region is far west of the hemisphere NASA’s New Horizons spacecraft viewed during close approach last summer. The upper image – in black and white – sports several dozen “haloed” craters. The largest crater, at bottom-right, measures about 30 miles (50 kilometers) across. The craters’ bright walls and rims stand out from their dark floors and surrounding terrain, creating the “halo” effect.

In the lower image, composition data from New Horizons’ Ralph/Linear Etalon Imaging Spectral Array (LEISA) indicate a connection between the bright halos and distribution of methane ice, shown in false color as purple. The floors and terrain between craters show signs of water ice, colored in blue. Exactly why the bright methane ice settles on these crater rims and walls is a mystery; also puzzling is why this same effect doesn’t occur broadly across Pluto.

The upper view is a mosaic made from two separate images obtained by New Horizons’ Long Range Reconnaissance Imager (LORRI). A high-resolution strip taken at approximately 760 feet (232 meters) per pixel is overlain on a broader, low-resolution image taken at 2,910 feet (889 meters) per pixel.  The images were obtained at ranges of 28,800 miles (46,400 kilometers) and 106,700 miles (171,700 kilometers) from Pluto, respectively, on July 14, 2015. The LEISA data came the same day, during the instrument’s highest-resolution scan of Pluto, with New Horizons 28,000 miles (45,500 kilometers) from Pluto, with a resolution of 1.7 miles (2.7 kilometers) per pixel.

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

New Horizons: Frozen nitrogen lake spotted on the surface of Pluto

A New Horizons image shows an interesting feature:

Pluto: On Frozen Pond

NASA’s New Horizons spacecraft spied several features on Pluto that offer evidence of a time millions or billions of years ago when – thanks to much higher pressure in Pluto’s atmosphere and warmer conditions on the surface – liquids might have flowed across and pooled on the surface of the distant world.

Pond[1]
Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
“In addition to this possible former lake, we also see evidence of channels that may also have carried liquids in Pluto’s past,” said Alan Stern, Southwest Research Institute, Boulder, Colorado—principal investigator of New Horizons and lead author of a scientific paper on the topic submitted to the journal Icarus.

This feature appears to be a frozen, former lake of liquid nitrogen, located in a mountain range just north of Pluto’s informally named Sputnik Planum. Captured by the New Horizons’ Long Range Reconnaissance Imager (LORRI) as the spacecraft flew past Pluto on July 14, 2015, the image shows details as small as about 430 feet (130 meters). At its widest point the possible lake appears to be about 20 miles (30 kilometers) across.

===

See also a recent presentation of New Horizons results so far: New Horizons Team Presents Latest Pluto Science Results at Planetary Conference.