Category Archives: Space Science

Videos: TMRO Orbit 12.08 – “Stories from a Mars rover specialist”

The latest TMRO.tv Space show is now available: Stories from a Mars rover specialist – Orbit 12.08

This week Dr Tanya Harrison joins us to talk about the science of Mars and her experiences working on various Mars missions such as Opportunity, Curiosity, Mars Reconnaissance Orbiter and the upcoming Mars 2020 rover. We also talk about how Arizona State University is promoting collaboration between industry and academia through their NewSpace Initiative.

Here are recent TMRO space news reporst:

====

Chasing New Horizons: Inside the Epic First Mission to Pluto

Space sciences roundup – March.7.2019

A sampling of recent articles, videos, and images related to space related sciences:

** Video shows Hayabusa2 landing on asteroid Ryuga and firing a projectile that stired up material from the surface to allow for capturing samples of the asteroid to return to earth: Watch Hayabusa2’s incredible touchdown on asteroid Ryugu | The Planetary Society

The video was shot with Hayabusa2’s small monitoring camera, CAM-H, which points downward from the side of the main spacecraft bus. Incredibly, the camera was funded by donations from the public!

There’s so much to like about the video: The reflection of Ryugu on Hayabusa2’s shiny surface. The white target marker containing names of Planetary Society members, visible in the lower-left corner for the first part of the video. And, of course, the incredible spray of debris when Hayabusa2 hits the surface and fires its tantalum bullet.

With so much material flying around, the team says “the potential for sample collection is high.” That hopefully includes some larger pieces that either floated directly into the sample catcher or were caught on the inner lip of the sample horn, giving them a chance to tumble up into the catcher later. JAXA also confirmed some debris stuck to the lens of one of the optical navigation cameras.

** NASA’s InSight Mars lander’s drill slowed by hard rock. Mars InSight Lander’s ‘Mole’ Pauses Digging – NASA’s InSight Mars Lander

NASA’s Mars InSight lander has a probe designed to dig up to 16 feet (5 meters) below the surface and measure heat coming from inside the planet. After beginning to hammer itself into the soil on Thursday, Feb. 28, the 16-inch-long (40-centimeter-long) probe — part of an instrument called the Heat and Physical Properties Package, or HP3 — got about three-fourths of the way out of its housing structure before stopping. No significant progress was seen after a second bout of hammering on Saturday, March 2. Data suggests the probe, known as a “mole,” is at a 15-degree tilt.

Scientists suspect it hit a rock or some gravel. The team had hoped there would be relatively few rocks below ground, given how few appear on the surface beside the lander. Even so, the mole was designed to push small rocks aside or wend its way around them. The instrument, which was provided for InSight by the German Aerospace Center (DLR), did so repeatedly during testing before InSight launched.

“The team has decided to pause the hammering for now to allow the situation to be analyzed more closely and jointly come up with strategies for overcoming the obstacle,” HP3 Principal Investigator Tilman Spohn of DLR wrote in a blog post. He added that the team wants to hold off from further hammering for about two weeks.

HP3 on the Martian Surface: NASA’s InSight lander set its heat probe, called the Heat and Physical Properties Package (HP3), on the Martian surface on Feb. 12. Image Credit: NASA/JPL-Caltech/DLR. Full image and caption ›

** Israeli Beresheet lunar probe sends selfie as it moves closer to the Moon: Been here, done that: SpaceIL sends its first selfie from space – ISRAEL21c

The SpaceIL Beresheet lunar lander spacecraft takes a picture of itself along with the Earth in the background.

More background info on the selfie:

** View the Moon in the colors of its minerals in this image created by A James Mccarthy (u/ajamesmccarthy) and posted on Reddit


See also:

** The Chinese Chang’e 4 lander & rover on the far side of the Moon is busy on its third lunar day (equal to 14 earth days):  Yutu-2 Rocks On into Lunar Day 3 for Chang’e-4 mission | The Planetary Society

Yutu-2 awakened for lunar day 3 of the mission at 02:51 UTC on 28 February, with the lander following later the same day at 23:52. A few days later, the rover stood down for its ‘noon nap’ to avoid heating issues from a high solar incidence angle, at 10:25 UTC on March 3. It will resume its activities early on 10 March, before entering a sleep state around 02:00 UTC on 13 March, when the Sun is low in the sky over Von Kármán crater in preparation for the lunar nighttime.

According to a release by the China Lunar Exploration Program (CLEP) on 4 March, Yutu-2 has so far travelled 127 meters, adding 7 meters to the total of 120 meters driven on lunar days 1 (44.185 m) and 2 (75.815 m).

The apparent relatively low distance is believed to be due to Yutu-2 taking time to image nearby rocks and features in the regolith. Analysis of the images from the Visible and Near-Infrared Imaging Spectrometer (VNIS) and Panoramic camera is expected to provide insight into the origin and composition of the rocks and development of the lunar far side itself.

Yutu-2 observes some Moon rocks during the rover’s third Lunar Day since landing on the far side.

** NASA will pay companies with lunar spacecraft for delivery of scientific instruments and experiments to the Moon as soon as their spacecraft are ready to go: NASA Selects Experiments for Possible Lunar Flights in 2019 – NASA

NASA has selected 12 science and technology demonstration payloads to fly to the Moon as early as the end of this year, dependent upon the availability of commercial landers. These selections represent an early step toward the agency’s long-term scientific study and human exploration of the Moon and, later, Mars.

** NASA MAVEN Mars orbiter to support communications with Mars 2020 rover:

NASA’s 4-year-old atmosphere-sniffing Mars Atmosphere and Volatile Evolution (MAVEN) mission is embarking on a new campaign today to tighten its orbit around Mars. The operation will reduce the highest point of the MAVEN spacecraft’s elliptical orbit from 3,850 to 2,800 miles (6,200 to 4,500 kilometers) above the surface and prepare it to take on additional responsibility as a data-relay satellite for NASA’s Mars 2020 rover, which launches next year.

“The MAVEN spacecraft has done a phenomenal job teaching us how Mars lost its atmosphere and providing other important scientific insights on the evolution of the Martian climate,” said Jim Watzin, director of NASA’s Mars Exploration Program. “Now we’re recruiting it to help NASA communicate with our forthcoming Mars rover and its successors.”

While MAVEN’s new orbit will not be drastically shorter than its present orbit, even this small change will significantly improve its communications capabilities. “It’s like using your cell phone,” said Bruce Jakosky, MAVEN principal investigator from the University of Colorado, Boulder. “The closer you are to a cell tower, the stronger your signal.”

Aerobraking plan for MAVEN. (left) Current MAVEN orbit around Mars: 6,200 kilometers (~3,850 miles) at highest altitude, and an orbit period of about 4.5 hours. (center) Aerobraking process: MAVEN performs a series of “deep dip” orbits approaching to within about 125 kilometers (~78 miles) of Mars at lowest altitude, causing drag from the atmosphere to slow down the spacecraft. Over roughly 360 orbits spanning 2.5 months, this technique reduces the spacecraft’s altitude to about 4,500 kilometers (~2,800 miles) and its orbit period to about 3.5 hours. (right) Post-aerobraking orbit, with reduced altitude and shorter orbit period. Credits: NASA’s Scientific Visualization Studio/Kel Elkins and Dan Gallagher. Download in high resolution from the Scientific Visualization Studio

** More Mars caving via images from the Mars Reconnaissance Orbiter (MRO) camera : Another batch of caves/pits found on Mars | Behind The Black

Images from the MRO showing pits, located north and west of Arsia Mons. Credits Bob Zimmerman

The November release imaged three pits found on the southern flanks of Arsia Mons. The January 2019 release found several north of the volcano, two of which are very close to the two middle new pits highlighted above. The February release, which is the focus of this post, included four more pits, shown above, all located north and west of Arsia Mons, as shown in the overview map [shown below in image from Behind the Black].

MRO images of Arsia Mons with notation by Bob Zimmerman.

** Our sun is spotless as it reaches a zero minimum in the current phase of the solar cycle. We will have to wait and see how long it remains in that state. Sunspot update February 2019: The Sun flatlines again | Behind The Black

The number of sunspots in the current cycle since 2008. Annotated by Bob Zimmerman.

** And our solar system is very bigAstronomers discover solar system’s most distant object, nicknamed ‘FarFarOut’ – AAAS

For most people, snow days aren’t very productive. Some people, though, use the time to discover the most distant object in the solar system.

That’s what Scott Sheppard, an astronomer at the Carnegie Institution for Science in Washington, D.C., did this week when a snow squall shut down the city. A glitzy public talk he was due to deliver was delayed, so he hunkered down and did what he does best: sifted through telescopic views of the solar system’s fringes that his team had taken last month during their search for a hypothesized ninth giant planet.

That’s when he saw it, a faint object at a distance 140 times farther from the sun than Earth—the farthest solar system object yet known, some 3.5 times more distant than Pluto. The object, if confirmed, would break his team’s own discovery, announced in December 2018, of a dwarf planet 120 times farther out than Earth, which they nicknamed “Farout.” For now, they are jokingly calling the new object “FarFarOut.” “This is hot off the presses,” he said during his rescheduled talk on 21 February.

** Juno’s Jupiter images never get old: Dramatic Jupiter | NASA

Jupiter’s northern hemisphere as seen by Jupiter in an image enhanced by citizen scientist Kevin M. Gill.

====

Chasing New Horizons: Inside the Epic First Mission to Pluto

Japan’s Hayabusa-2 grabs sample of asteroid Ryuga

On Friday, Japan’s Hayabusa 2 spacecraft maneuvered down to the surface of the small asteroid Ryugu and landed just long enough to extract a sample of surface material.

From Spaceflight Now:

The spacecraft dropped a pair of Japanese robots to hop across Ryugu’s surface in September, then released a European mobile scout to land on the asteroid in October. The miniature landers became the first mobile vehicles to explore the surface of an asteroid. All three robots returned imagery and science data.

The shadow of Hayabusa 2 on the Ryuga asteroid.

Mission managers hoped to grab the first sample with Hayabusa 2 in late October, but officials postponed the descent to complete additional analysis and surveys after the spacecraft found the asteroid is more rocky and rugged than expected. Managers decided to deploy a target marker at their preferred landing site for Hayabusa 2’s first sampling attempt, helping the spacecraft navigate a narrow corridor to safely reach a location free of boulders, which could have endangered the mission.

“Ryugu turned out to be more difficult than we expected, so we decided to deploy all kinds of technologies that are available,” Tsuda said.

Hayabusa 2 could try to gather two more samples from other locations on Ryugu before departing the asteroid in November or December. The spacecraft must begin its journey back to Earth by the end of the year to return home in December 2020, when Hayabusa 2 will release a sample carrier to re-enter the atmosphere and parachute to a landing in Australia.

Find more about the project at:

====

The Space Barons: Elon Musk, Jeff Bezos, and the Quest to Colonize the Cosmos

New Horizons: High-res images of Ultima Thule + New documentary “Summiting the Solar System”

On Friday, the New Horizons mission released the highest resolution images yet of the Kuiper Belt object Ultima Thule, which the probe flew by on January 1st: Spot On! New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule

The mission team called it a “stretch goal” – just before closest approach, precisely point the cameras on NASA’s New Horizons spacecraft to snap the sharpest possible pics of the Kuiper Belt object nicknamed Ultima Thule, its New Year’s flyby target and the farthest object ever explored.

Now that New Horizons has sent those stored flyby images back to Earth, the team can enthusiastically confirm that its ambitious goal was met.

These new images of Ultima Thule – obtained by the telephoto Long-Range Reconnaissance Imager (LORRI) just 6½ minutes before New Horizons’ closest approach to the object (officially named 2014 MU69) at 12:33 a.m. EST on Jan. 1 – offer a resolution of about 110 feet (33 meters) per pixel. Their combination of high spatial resolution and a favorable viewing angle gives the team an unprecedented opportunity to investigate the surface, as well as the origin and evolution, of Ultima Thule – thought to be the most primitive object ever encountered by a spacecraft.

“Bullseye!” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute (SwRI). “Getting these images required us to know precisely where both tiny Ultima and New Horizons were — moment by moment – as they passed one another at over 32,000 miles per hour in the dim light of the Kuiper Belt, a billion miles beyond Pluto. This was a much tougher observation than anything we had attempted in our 2015 Pluto flyby.

Highest Resolution Image of Ultima Thule: The most detailed images of Ultima Thule — obtained just minutes before the spacecraft’s closest approach at 12:33 a.m. EST on Jan. 1 — have a resolution of about 110 feet (33 meters) per pixel. Their combination of higher spatial resolution and a favorable viewing geometry offer an unprecedented opportunity to investigate the surface of Ultima Thule, believed to be the most primitive object ever encountered by a spacecraft. Full size image and caption

And here is a clip of the fly-by:

New Horizons scientists created this movie from 14 different images taken by the New Horizons Long Range Reconnaissance Imager (LORRI) shortly before the spacecraft flew past the Kuiper Belt object nicknamed Ultima Thule (officially named 2014 MU69) on Jan. 1, 2019. The central frame of this sequence was taken on Jan. 1 at 5:26:54 UT (12:26 a.m. EST), when New Horizons was 4,117 miles (6,640 kilometers) from Ultima Thule, some 4.1 billion miles (6.6 billion kilometers) from Earth. Ultima Thule nearly completely fills the LORRI image and is perfectly captured in the frames, an astounding technical feat given the uncertain location of Ultima Thule and the New Horizons spacecraft flying past it at over 32,000 miles per hour.

(Note: To loop the video, right button click on it and select “Loop” from the list of options shown.)

=====

Here are the two parts of the documentary, New Horizons – Summiting the Solar System, about the New Horizons fly-by of Ultima Thule:

Summiting the Solar System is a story of exploration at its most ambitious and extreme. On January 1, 2019, NASA’s New Horizons spacecraft flies by a small Kuiper Belt Object known scientifically as 2014 MU69, but nicknamed “Ultima Thule.” Ultima is four billion miles from Earth, and will be the most ancient and most distant world ever explored close up. It is expected to offer discoveries about the origin and evolution of our solar system. Chosen by the team and the public, the nickname honors the mythical land beyond the edges of the known world. But “Summiting” is much more than the story of a sophisticated, plutonium-fueled robotic spacecraft exploring far from the Sun. The New Horizons mission is powered as much by the passions of a small team of humans—men and women, scientists and engineers—for whom pushing the frontiers of the known, climbing the very peaks of the possible, has been the dream of many decades.

“Summiting” goes behind the scenes of the most ambitious occultation campaigns ever mounted, as scientists deployed telescopes to Senegal and Colombia in 2018, and Argentina, South Africa and New Zealand in 2017, to glimpse Ultima as it passed in front of a star, and gathered data on the object’s size and orbit that has been essential to planning the flyby. Mission scientists recall the astonishing scientific success of flying through the Pluto system in 2015, and use comparative planetology to show how Earth and Pluto are both amazingly different and—with glaciers, tall mountains, volcanoes and blue skies—awesomely similar. Appealing to space junkies and adrenaline junkies alike, “Summiting” brings viewers along for the ride of a lifetime as New Horizons pushes past Pluto and braves an even more hazardous unknown.

====

Chasing New Horizons: Inside the Epic First Mission to Pluto

The Opportunity Rover mission declared over but other missions on Mars continue

After several months of futile efforts to contact Opportunity, which went silent last year during a dust storm that covered most of Mars, NASA today officially declared the end of the rover’s mission:

This video gives a brief review of Opportunity’s 15 years of exploration:

Opportunity left a long trail of accomplishments behind it: Look Back at Opportunity’s Record-Setting Mission – NASA

In this image from 2010, Opportunity used its navigation camera for this northward view of tracks the rover left on a drive from one energy-favorable position on a sand ripple to another. The rover team called this strategy “hopping from lily pad to lily pad.”

The Opportunity rover stopped communicating with Earth when a severe Mars-wide dust storm blanketed its location in June 2018. After more than a thousand commands to restore contact, engineers in the Space Flight Operations Facility at NASA’s Jet Propulsion Laboratory (JPL) made their last attempt to revive Opportunity Tuesday, to no avail. The solar-powered rover’s final communication was received June 10.

Designed to last just 90 Martian days and travel 1,100 yards (1,000 meters), Opportunity vastly surpassed all expectations in its endurance, scientific value and longevity. In addition to exceeding its life expectancy by 60 times, the rover traveled more than 28 miles (45 kilometers) by the time it reached its most appropriate final resting spot on Mars – Perseverance Valley.

The final transmission, sent via the 70-meter Mars Station antenna at NASA’s Goldstone Deep Space Complex in California, ended a multifaceted, eight-month recovery strategy in an attempt to compel the rover to communicate.

===

Meanwhile, activities of the other missions on Mars continue. The InSight lander in December deployed the seismometer and this week placed the heat probe onto the surface:

From the NASA JPL article:

NASA’s InSight lander has placed its second instrument on the Martian surface. New images confirm that the Heat Flow and Physical Properties Package, or HP3, was successfully deployed on Feb. 12 about 3 feet (1 meter) from InSight’s seismometer, which the lander recently covered with a protective shield. HP3 measures heat moving through Mars’ subsurface and can help scientists figure out how much energy it takes to build a rocky world.

Equipped with a self-hammering spike, mole, the instrument will burrow up to 16 feet (5 meters) below the surface, deeper than any previous mission to the Red Planet. For comparison, NASA’s Viking 1 lander scooped 8.6 inches (22 centimeters) down. The agency’s Phoenix lander, a cousin of InSight, scooped 7 inches (18 centimeters) down.

“We’re looking forward to breaking some records on Mars,” said HP3 Principal Investigator Tilman Spohn of the German Aerospace Center (DLR), which provided the heat probe for the InSight mission. “Within a few days, we’ll finally break ground using a part of our instrument we call the mole.”

NASA’s InSight Prepares to Take Mars’ Temperature. NASA’s InSight lander set its heat probe, called the Heat and Physical Properties Package (HP3), on the Martian surface on Feb. 12. Credit: NASA/JPL-Caltech/DLR. › Full image and caption

===

Check out a selection of recent images of Mars from the Curiosity Rover: Curiosity Mars Rover: Scenic Shots – LeonardDavid.com

Curiosity Mastcam Left Sol 2313 February 7, 2019
Credit: NASA/JPL-Caltech/MSSS

====

Chasing New Horizons: Inside the Epic First Mission to Pluto