Category Archives: Space Science

Curiosity rover sends a grand panorama from Vera Rubin Ridge

Check out the latest 360 degree panorama of the Martian landscape taken by the rover Curiosity:

Curiosity Surveys a Mystery Under Dusty Skies

After snagging a new rock sample on Aug. 9, NASA’s Curiosity rover surveyed its surroundings on Mars, producing a 360-degree panorama of its current location on Vera Rubin Ridge.

The panorama includes umber skies, darkened by a fading global dust storm. It also includes a rare view by the Mast Camera of the rover itself, revealing a thin layer of dust on Curiosity’s deck. In the foreground is the rover’s most recent drill target, named “Stoer” after a town in Scotland near where important discoveries about early life on Earth were made in lakebed sediments.

The new drill sample delighted Curiosity’s science team, because the rover’s last two drill attempts were thwarted by unexpectedly hard rocks. Curiosity started using a new drill method earlier this year to work around a mechanical problem. Testing has shown it to be as effective at drilling rocks as the old method, suggesting the hard rocks would have posed a problem no matter which method was used.

This 360-degree panorama was taken on Aug. 9 by NASA’s Curiosity rover at its location on Vera Rubin Ridge. Image Credit: NASA/JPL-Caltech/MSSS
Full image and caption

There’s no way for Curiosity to determine exactly how hard a rock will be before drilling it, so for this most recent drilling activity, the rover team made an educated guess. An extensive ledge on the ridge was thought to include harder rock, able to stand despite wind erosion; a spot below the ledge was thought more likely to have softer, erodible rocks. That strategy seems to have panned out, but questions still abound as to why Vera Rubin Ridge exists in the first place.

The rover has never encountered a place with so much variation in color and texture, according to Ashwin Vasavada, Curiosity’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. JPL leads the Mars Science Laboratory mission that Curiosity is a part of.

“The ridge isn’t this monolithic thing — it has two distinct sections, each of which has a variety of colors,” Vasavada said. “Some are visible to the eye and even more show up when we look in near-infrared, just beyond what our eyes can see. Some seem related to how hard the rocks are.”

The best way to discover why these rocks are so hard is to drill them into a powder for the rover’s two internal laboratories. Analyzing them might reveal what’s acting as “cement” in the ridge, enabling it to stand despite wind erosion. Most likely, Vasavada said, groundwater flowing through the ridge in the ancient past had a role in strengthening it, perhaps acting as plumbing to distribute this wind-proofing “cement.”

Much of the ridge contains hematite, a mineral that forms in water. There’s such a strong hematite signal that it drew the attention of NASA orbiters like a beacon. Could some variation in hematite result in harder rocks? Is there something special in the ridge’s red rocks that makes them so unyielding?

For the moment, Vera Rubin Ridge is keeping its secrets to itself.

Two more drilled samples are planned for the ridge in September. After that, Curiosity will drive to its scientific end zone: areas enriched in clay and sulfate minerals higher up Mt. Sharp. That ascent is planned for early October.

====

 

Presence of water ice on the Moon confirmed

Deposits of water in craters on the polar regions of the Moon has been indicated since the early 1990s when the Clementine probe saw radar reflections from the surface that were consistent with water ice. The Lunar Prospector mission not long after reported neutron scattering data that also indicated large amounts of water. Evidence continued to build with further studies form missions like the Lunar Reconnaissance Orbiter. However, there were lingering doubts over the extent of the water and whether the signals were actually due more to hydroxyl (HO−) than to pure water (H2O). The water molecules might also be scattered within the dust of the lunar regolith  rather than collected into solid ice.

This week a study of sensor data from the Indian Chandrayaan-1 mission was released and it appears to confirm once and for all that there are in fact extensive deposits of water ice in the permanently shadowed floors of craters at the poles of the Moon. This water offers a tremendous boon for human activities on the Moon since it means an essential resource to support life is there and doesn’t have to be brought from earth at great expense. In addition water can be relatively easily split into hydrogen and oxygen for use as rocket fuel and for energy storage.

Ice Confirmed at the Moon’s Poles

The image shows the distribution of surface ice at the Moon’s south pole (left) and north pole (right), detected by NASA’s Moon Mineralogy Mapper instrument. Blue represents the ice locations, plotted over an image of the lunar surface, where the gray scale corresponds to surface temperature (darker representing colder areas and lighter shades indicating warmer zones). The ice is concentrated at the darkest and coldest locations, in the shadows of craters. This is the first time scientists have directly observed definitive evidence of water ice on the Moon’s surface. Credits: NASA. › Larger view

In the darkest and coldest parts of its polar regions, a team of scientists has directly observed definitive evidence of water ice on the Moon’s surface. These ice deposits are patchily distributed and could possibly be ancient. At the southern pole, most of the ice is concentrated at lunar craters, while the northern pole’s ice is more widely, but sparsely spread.

A team of scientists, led by Shuai Li of the University of Hawaii and Brown University and including Richard Elphic from NASA’s Ames Research Center in California’s Silicon Valley, used data from NASA’s Moon Mineralogy Mapper (M3) instrument to identify three specific signatures that definitively prove there is water ice at the surface of the Moon.

M3, aboard the Chandrayaan-1 spacecraft, launched in 2008 by the Indian Space Research Organization, was uniquely equipped to confirm the presence of solid ice on the Moon. It collected data that not only picked up the reflective properties we’d expect from ice, but was able to directly measure the distinctive way its molecules absorb infrared light, so it can differentiate between liquid water or vapor and solid ice.

Most of the newfound water ice lies in the shadows of craters near the poles, where the warmest temperatures never reach above minus 250 degrees Fahrenheit. Because of the very small tilt of the Moon’s rotation axis, sunlight never reaches these regions.

Previous observations indirectly found possible signs of surface ice at the lunar south pole, but these could have been explained by other phenomena, such as unusually reflective lunar soil.

With enough ice sitting at the surface — within the top few millimeters — water would possibly be accessible as a resource for future expeditions to explore and even stay on the Moon, and potentially easier to access than the water detected beneath the Moon’s surface.

Learning more about this ice, how it got there, and how it interacts with the larger lunar environment will be a key mission focus for NASA and commercial partners, as we endeavor to return to and explore our closest neighbor, the Moon.

The findings were published in the Proceedings of the National Academy of Sciences on August 20, 2018.

NASA’s Jet Propulsion Laboratory, Pasadena, California, designed and built the moon mineralogy mapper instrument and was home to its project manager.

====

 

Videos: ULA Delta IV rocket launches NASA’s Parker Solar Probe

Early this morning, a United Launch Alliance Delta IV Heavy rocket successfully launched NASA’s Parker Solar Probe from Cape Canaveral on a unique mission to study the Sun’s corona up close NASA, ULA Launch Parker Solar Probe on Historic Journey to Touch Sun | NASA

“The United Launch Alliance Delta IV Heavy rocket launches NASA’s Parker Solar Probe to touch the Sun, Sunday, Aug. 12, 2018, from Launch Complex 37 at Cape Canaveral Air Force Station, Florida.” – NASA

Few get to see a spacecraft named after themselves launched on a grand rocket. A clip of Dr. Eugene Newman Parker watching the launch last night:

The spacecraft is carrying a chip with the names of 1.1 million public participants etched on it.

See previous postings here and here on the Parker mission.

More resources at the Parker Solar Probe Mission HQ at Johns Hopkins Univ. Applied Physics Lab.

====

 

Video: TMRO Orbit 11.29 – “NASA’s InSight mission to study Mars”

The latest episode of TMRO.tv Space is now available on line: NASA’s InSight mission to study Mars – Orbit 11.29 – TMRO

The Principal Investigator of NASA/JPL’s InSight Mission, Bruce Banerdt, joins us to talk about their mission to Mars, looking for Marsquakes and the latest on InSight itself.

News topics and launches covered:

Space Launches:

  • Blue Origin Mission 9
  • Falcon 9 Launches Telstar 19 VANTAGE
  • Ariane 5 Launches Galileo 23-26
  • Falcon 9 Launches Iridium-7 Mission

In Space News:

  • Water on Mars
  • Commercial Crew Hype
  • TESS begins hunting planets

====

 

Videos: Parker Solar Probe set to launch on mission to study the Sun up close

On August 4th, United Launch Alliance (ULA) aims to launch a big Delta IV Heavy rocket from Cape Canaveral to send NASA’s Parker Solar Probe into an orbit that will bring it far closer to our home star than any previous spacecraft has dared go. (Perhaps your name is aboard the probe.) A cutting-edge heat shield enables the probe to fly directly through the corona, which is the extremely hot ionized plasma that surrounds the Sun.

Here is a new NASA video about the mission:

More about the mission at Parker Solar Probe: Humanity’s First Visit to a Star | NASA:

In order to unlock the mysteries of the Sun’s atmosphere, Parker Solar Probe will use Venus’ gravity during seven flybys over nearly seven years to gradually bring its orbit closer to the Sun. The spacecraft will fly through the Sun’s atmosphere as close as 3.8 million miles to our star’s surface, well within the orbit of Mercury and more than seven times closer than any spacecraft has come before. (Earth’s average distance to the Sun is 93 million miles.)

Flying into the outermost part of the Sun’s atmosphere, known as the corona, for the first time, Parker Solar Probe will employ a combination of in situ measurements and imaging to revolutionize our understanding of the corona and expand our knowledge of the origin and evolution of the solar wind. It will also make critical contributions to our ability to forecast changes in Earth’s space environment that affect life and technology on Earth.

A simulation of the orbit that will bring the probe closer and closer to the sub at perigee:

====