Category Archives: Astronomy

Hubble: Observable universe holds ten times more galaxies than previously thought

The latest finding with the Hubble space telescope:

Observable Universe contains ten times more galaxies
than previously thought

Among other data, scientists used the galaxies visible in the Great Observatories Origins Deep Survey (GOODS) to recalculate the total number of galaxies in the observable Universe. The image was taken by the NASA/ESA Hubble Space Telescope and covers a portion of the southern field of GOODS. This is a large galaxy census, a deep-sky study by several observatories to trace the formation and evolution of galaxies.
Among other data, scientists used the galaxies visible in the Great Observatories Origins Deep Survey (GOODS) to recalculate the total number of galaxies in the observable Universe. The image was taken by the NASA/ESA Hubble Space Telescope and covers a portion of the southern field of GOODS. This is a large galaxy census, a deep-sky study by several observatories to trace the formation and evolution of galaxies. [Larger images]

Astronomers using data from the NASA/ESA Hubble Space Telescopes and other telescopes have performed an accurate census of the number of galaxies in the Universe. The group came to the surprising conclusion that there are at least 10 times as many galaxies in the observable Universe as previously thought. The results have clear implications for our understanding of galaxy formation, and also help solve an ancient astronomical paradox — why is the sky dark at night?

Since Edwin Hubble discovered that the Milky Way is not the only galaxy in the Universe astronomers try to find out how many of them are there. This new Hubblecast focusses on the question “How many galaxies are there?” including the new numbers achieved in 2016.

One of the most fundamental questions in astronomy is that of just how many galaxies the Universe contains. The Hubble Deep Field images, captured in the mid 1990s, gave the first real insight into this. Myriad faint galaxies were revealed, and it was estimated that the observable Universe contains about 100 billion galaxies [1]. Now, an international team, led by Christopher Conselice from the University of Nottingham, UK, have shown that this figure is at least ten times too low.

This animation demonstrates the evolution of galaxy size and number over cosmic time. It starts with the modern Universe with rather few and large galaxies — as they can be seen in our cosmic neighbourhood — and ends with a view of the early Universe with many tiny galaxies. Credit: ESA/Hubble, M. Kornmesser

Conselice and his team reached this conclusion using deep space images from Hubble, data from his team’s previous work, and other published data [2]. They painstakingly converted the images into 3D, in order to make accurate measurements of the number of galaxies at different times in the Universe’s history. In addition, they used new mathematical models which allowed them to infer the existence of galaxies which the current generation of telescopes cannot observe. This led to the surprising realisation that in order for the numbers to add up, some 90% of the galaxies in the observable Universe are actually too faint and too far away to be seen — yet.

“It boggles the mind that over 90% of the galaxies in the Universe have yet to be studied. Who knows what interesting properties we will find when we observe these galaxies with the next generation of telescopes,” explains Christopher Conselice about the far-reaching implications of the new results.

In analysing the data the team looked more than 13 billion years into the past. This showed them that galaxies are not evenly distributed throughout the Universe’s history. In fact, it appears that there were a factor of 10 more galaxies per unit volume when the Universe was only a few billion years old compared with today. Most of these galaxies were relatively small and faint, with masses similar to those of the satellite galaxies surrounding the Milky Way.

This animation demonstrates the lookback into the distant, early Universe. While the modern Universe contains in average larger galaxies, the early Universe is dominated by many tiny galaxies. Credit: ESA/Hubble, M. Kornmesser

These results are powerful evidence that a significant evolution has taken place throughout the Universe’s history, an evolution during which galaxies merged together, dramatically reducing their total number. “This gives us a verification of the so-called top-down formation of structure in the Universe,” explains Conselice.

The decreasing number of galaxies as time progresses also contributes to the solution of Olbers’ paradox — why the sky is dark at night [3]. The team came to the conclusion that there is such an abundance of galaxies that, in principle, every point in the sky contains part of a galaxy. However, most of these galaxies are invisible to the human eye and even to modern telescopes, owing to a combination of factors: redshifting of light, the Universe’s dynamic nature and the absorption of light by intergalactic dust and gas, all combine to ensure that the night sky remains mostly dark.

This animation starts with a lookback into the early Universe. The local, modern Universe with large and evolved galaxies can be seen to the left. The distant, early Universe with many tiny and primordial galaxies can be seen to the right. These galaxies grew through mergers to the galaxies we see today. The animation slowly turns by 90 degree and ends with a view similar to the Hubble Deep fields. Credit: ESA/Hubble, M. Kornmesser

Notes

[1] The limited speed of light and the age of the Universe mean that the entire Universe cannot be seen from Earth. The part visible within our cosmological horizon is called the observable Universe.

[2] The study uses data from Perez-Gonzalez et al. (2008), Kajisawa et al. (2009), Fontanta et al. (2004, 2006), Caputi et al. (2011), Pozzetti et al. (2009), Mortlock et al. (2011), Muzzin et al. (2013), Mortlock et al. (2015), Duncan et al. (2014), Grazian et al. (2015), Tomczak et al. (2014) and Song et al. (2015).

[3] The astronomer Heinrich Olbers argued that the night sky should be permanently flooded by light, because in an unchanging Universe filled with an infinite number of stars, every single part of the sky should be occupied by a bright object. However, our modern understanding of the Universe is that it is both finite and dynamic — not infinite and static.

This video pans across the southern field of the Great Observatories Origins Deep Survey (GOODS). GOODS is a large galaxy census, a deep-sky study by several observatories to trace the formation and evolution of galaxies. Credit: NASA, ESA/Hubble, Music: Johan B. Monell (www.johanmonell.com)

ESO: Ancient stars discovered at center of the Milky Way

The latest report from the European Southern Observatory (ESO):

The Milky Way’s Ancient Heart
VISTA finds remains of archaic globular star cluster

This image, captured with the VISTA infrared survey telescope, as part of the Variables in the Via Lactea (VVV) ESO public survey, shows the central part of the Milky Way. While normally hidden behind obscuring dust, the infrared capabilities of VISTA allow to study the stars close to the galactic centre. Within this field of view astronomers detected several ancient stars, of a type known as RR Lyrae. As RR Lyrae stars typically reside in ancient stellar populations over 10 billion years old, this discovery suggests that the bulging centre of the Milky Way likely grew through the merging of primordial star clusters.
This image, captured with the VISTA infrared survey telescope, as part of the Variables in the Via Lactea (VVV) ESO public survey, shows the central part of the Milky Way. While normally hidden behind obscuring dust, the infrared capabilities of VISTA allow to study the stars close to the galactic centre. Within this field of view astronomers detected several ancient stars, of a type known as RR Lyrae. As RR Lyrae stars typically reside in ancient stellar populations over 10 billion years old, this discovery suggests that the bulging centre of the Milky Way likely grew through the merging of primordial star clusters. (Larger images)

Ancient stars, of a type known as RR Lyrae, have been discovered in the centre of the Milky Way for the first time, using ESO’s infrared VISTA telescope. RR Lyrae stars typically reside in ancient stellar populations over 10 billion years old. Their discovery suggests that the bulging centre of the Milky Way likely grew through the merging of primordial star clusters. These stars may even be the remains of the most massive and oldest surviving star cluster of the entire Milky Way.

The video, based on observations made in the infrared with the VISTA infrared survey telescope shows the central region of the Milky Way galaxy. Several variable stars within the field of views are marked with circles. They can also be identified as they brighten and fade in regular intervals. At the end the video zooms on one of the newly discovered RR Lyrae stars (marked with a red circle), which are too faint to be seen clearly in the large field of view. Credit: ESO/VVV Survey/D. Minniti

A team led by Dante Minniti (Universidad Andrés Bello, Santiago, Chile) and Rodrigo Contreras Ramos (Instituto Milenio de Astrofísica, Santiago, Chile) used observations from the VISTA infrared survey telescope, as part of the Variables in the Via Lactea (VVV) ESO public survey, to carefully search the central part of the Milky Way. By observing infrared light, which is less affected by cosmic dust than visible light, and exploiting the excellent conditions at ESO’s Paranal Observatory, the team was able to get a clearer view of this region than ever before. They found a dozen ancient RR Lyrae stars at the heart of the Milky Way that were previously unknown.

This visible light wide-field view shows the rich star clouds in the constellation of Sagittarius (the Archer) in the direction of the centre of our Milky Way galaxy. The entire image is filled with vast numbers of stars — but far more remain hidden behind clouds of dust and are only revealed in infrared images. This view was created from photographs in red and blue light and forming part of the Digitized Sky Survey 2. The field of view is approximately 3.5 degrees x 3.6 degrees.
This visible light wide-field view shows the rich star clouds in the constellation of Sagittarius (the Archer) in the direction of the centre of our Milky Way galaxy. The entire image is filled with vast numbers of stars — but far more remain hidden behind clouds of dust and are only revealed in infrared images. This view was created from photographs in red and blue light and forming part of the Digitized Sky Survey 2. The field of view is approximately 3.5 degrees x 3.6 degrees. (Larger images)

Our Milky Way has a densely populated centre — a feature common to many galaxies, but unique in that it is close enough to study in depth. This discovery of RR Lyrae stars provides compelling evidence that helps astronomers decide between two main competing theories for how nuclear bulges form [1].

This video sequence starts from a wide field view of the Milky Way and closes near the galactic centre. Here astronomers using the VISTA infrared survey telescope discovered several ancient stars, of a type known as RR Lyrae. RR Lyrae stars typically reside in ancient stellar populations over 10 billion years old. Their discovery suggests that the bulging centre of the Milky Way likely grew through the merging of primordial star clusters. Credit: ESO, Digitized Sky Survey 2, N. Risinger (skysurvey.org. Acknowledgment: Davide De Martin and S. Guisard (www.eso.org/~sguisard), Music: Johan B. Monell (www.johanmonell.com)

RR Lyrae stars are typically found in dense globular clusters. They are variable stars, and the brightness of each RR Lyrae star fluctuates regularly. By observing the length of each cycle of brightening and dimming in an RR Lyrae, and also measuring the star’s brightness, astronomers can calculate its distance [2].

Unfortunately, these excellent distance-indicator stars are frequently outshone by younger, brighter stars and in some regions they are hidden by dust. Therefore, locating RR Lyrae stars right in the extremely crowded heart of the Milky Way was not possible until the public VVV survey was carried out using infrared light. Even so, the team described the task of locating the RR Lyrae stars in amongst the crowded throng of brighter stars as “daunting”.

This video zooms across a part of the sky close to the centre of our Milky Way, which was observed with the VISTA infrared survey telescope. Within this part of the sky astronomers discovered a dozen new variable stars. Their discovery suggests that the bulging centre of the Milky Way likely grew through the merging of primordial star clusters. Credit: ESO/VVV Survey/D. Minniti. Music: 5th Dimension

Their hard work was rewarded, however, with the identification of a dozen RR Lyrae stars. Their discovery indicate that remnants of ancient globular clusters are scattered within the centre of the Milky Way’s bulge.

Rodrigo Contreras Ramos elaborates:

“This discovery of RR Lyrae Stars in the centre of the Milky Way has important implications for the formation of galactic nuclei. The evidence supports the scenario in which the nuclear bulge was originally made out of a few globular clusters that merged.”

The theory that galactic nuclear bulges form through the merging of globular clusters is contested by the competing hypothesis that these bulges are actually due to the rapid accretion of gas. The unearthing of these RR Lyrae stars — almost always found in globular clusters — is very strong evidence that part of the Milky Way’s nuclear bulge did in fact form through merging. By extension, all other similar galactic bulges may have formed the same way.

Not only are these stars powerful evidence for an important theory of galactic evolution, they are also likely to be over 10 billion years old — the dim, but dogged survivors of perhaps the oldest and most massive star cluster within the Milky Way.

This chart shows the location of the field of view within which the RR Lyrae stars close to the galactic centre were discovered — marked with a red circle. The variable stars and the centre of the Milky Way are within the constellation of Sagittarius (The Archer). This map shows most of the stars visible to the unaided eye under good conditions.
This chart shows the location of the field of view within which the RR Lyrae stars close to the galactic centre were discovered — marked with a red circle. The variable stars and the centre of the Milky Way are within the constellation of Sagittarius (The Archer). This map shows most of the stars visible to the unaided eye under good conditions.

Notes

[1] The nuclear stellar bulge is the compact component in the innermost regions of the Milky Way (and other galaxies) extending to a size of about 400 light-years.

[2] RR Lyrae stars, like some other regular variables such as Cepheids, show a simple relationship between how quickly they change in brightness and how luminous they are. Longer periods mean brighter stars. This period-luminosity relationship can be used to deduce the distance of a star from its period of variation and its apparent brightness.

Project Blue: Crowd-funded space telescope aims to image exoplanet

Project Blue at the BoldlyGo Institute 

is a new science initiative to capture the first photograph of a potential Earth-like planet orbiting another Sun-like star. The mission aims to launch a lightweight space telescope to directly image exoplanets around Earth’s nearest star system, Alpha Centauri A and B.

With a budget the fraction of the cost of a mid-size astrophysics mission, and a planned launch by the end of the decade, this venture represents an ambitious leap forward in low-cost, high-impact space exploration.

Through active collaboration between research institutions, universities, private industry and citizens, Project Blue seeks to make space exploration a participatory, collective endeavor and inspire millions worldwide to engage in scientific inquiry.

The key technology will be a coronagraph that blocks the otherwise blinding light of the star and allows the planet’s far weaker reflected light to be observed:

Project Blue will place a state-of-the-art exoplanet imaging telescope into orbit. The instrument will be equipped with advanced high contrast imaging technologies embedded in a coronagraph with a deformable mirror, multi-star wavefront control, and specialized post-processing techniques.

Together they can efficiently suppress the light from both stars (Alpha Centauri A and B) separately, thus allowing any planets to be seen. Our team has extensive experience developing and testing these technologies — now it’s time to get them into space!

More details of the space telescope are described here.

Alpha Centauri A and B were chosen because:

  • Unusual proximity: At only 4.37 light years distance, Alpha Centauri is the closest star system to us, and contains not just one, but two stars similar to our Sun. The next Sun-like star is located 2.5x further away and would require a telescope 2.5 times larger in size.
  • Accessible Habitable Zone: Its proximity allows us to observe the habitable zone of each star for Earth-like planets with a modest space telescope with a powerful coronagraph, while any other star requires telescopes of at least 1 meter in size.
  • Fertile ground: Proxima Centauri, which is thought to be part of the same system, is now known to have a potentially habitable planet. We are acting on a new scientific urgency to investigate our nearest Sun-like stars!

The goal is to launch the privately funded observatory in 2019.

To sign up for email updates and/or to donate to the project, see Get Involved.

Follow developments at

Some articles about the project:

Update: Here is the official press release about the project:

The Push to Photograph Earth-Like Planet Begins With Launch of Project Blue
BoldlyGo Institute and Mission Centaur to Lead Consortium of Prominent Organizations Including the SETI Institute and University of Massachusetts Lowell to Reach the Next Great Milestone of Space Exploration

SAN FRANCISCO, CA–(Marketwired – Oct 11, 2016) – A consortium of prominent science and research institutions led by BoldlyGo Institute and Mission Centaur today announced Project Blue, an endeavor for a new era of discovery and space exploration. Employing recent technological advances, Project Blue is designed to be the first mission capable of obtaining an image of another planet like Earth — a powerful next step to understanding and exploring worlds outside our solar system. This new kind of privately-led, non-profit space initiative unites an extraordinary range of experts, including teams from the SETI Institute and the University of Massachusetts Lowell, on a daunting scientific and technical challenge.

Project Blue will work to fund, build and launch a compact exoplanet imaging telescope aimed at Alpha Centauri — the closest star system to Earth — to determine whether Earth-like planets exist around it and if so, to capture a direct “pale blue dot” image. While NASA’s Kepler mission has shown that terrestrial-sized planets are common in our galaxy, no one has yet been able to take a picture of one as small as Earth, in an orbit that could potentially sustain life. Project Blue would be the first. The mission will take about three years to construct and will conduct an intensive two-year study once in orbit.

“Now is the time to embark on this mission. Scientific imperative and technological advancements have converged to a point where we can finally take a serious look at our closest neighbor, Alpha Centauri,” said Jon Morse, CEO of BoldlyGo Institute. “Does it contain rocky planets? Do they have oceans and atmospheres? Could they conceivably support life? We launched Project Blue because we believe such a discovery would profoundly impact humankind’s understanding of the universe and spur a new wave of excitement in science and astronomy.”

Seeing Blue

Recent developments, including the extraordinary success of the Kepler mission and advances in optics and imaging technologies, have laid the groundwork for Project Blue. Kepler has discovered over 2300 confirmed exoplanets through indirect observation techniques, many of which scientists believe could have Earth-like characteristics. Imaging one directly is an achievement that would open a new path to detecting and characterizing possible life-sustaining worlds around nearby stars.

An Earth-like planet is characterized as 0.5 to 1.5 times the size of Earth and orbiting within the host star’s “habitable zone,” where the temperature could allow liquid water to exist on the planet’s surface. Such a planet with oceans and an atmosphere similar to Earth, unless obscured by clouds, could appear blue to the human eye.

Project Blue’s customized telescope will be mounted on an optimized commercial spacecraft and specifically focus on Alpha Centauri, allowing it to maintain modest size and cost compared to larger astrophysics missions. The spacecraft will conduct its study of the Alpha Centauri system from a special north-south, low-Earth orbit that provides the stable conditions necessary for such precise measurements.

Despite Alpha Centauri’s proximity, there is currently no telescope with high enough contrast capability to observe orbiting planets directly; detecting an Earth-sized planet next to its host star has been compared to detecting a firefly next to a lighthouse from ten miles away. Additionally, Alpha Centauri’s binary structure makes it a particularly challenging target. Since the system’s two stars, Alpha Centauri A and B, appear so close together in the night sky, observation requires a special approach to suppress both light sources to see any orbiting planets.

“What makes the Alpha Centauri system so attractive is that each of the two stars is a lot like our own sun, which gives us two chances to find planets in either of their habitable zones,” said Supriya Chakrabarti, professor in the Department of Physics and Applied Physics at the University of Massachusetts Lowell and director of its Lowell Center for Space Science and Technology. “This also gives us an opportunity to design a mission that leverages technology we’ve been developing and space qualifying in our NASA-supported programs.”

The Blue Moment

Beyond pioneering a range of cutting-edge technologies, Project Blue represents a new kind of endeavor: a privately-funded partnership of research organizations, universities and industry aiming to play a leadership role in space science. With BoldlyGo Institute and Mission Centaur at the helm, a number of leading institutions will partner on the project, with the list expected to grow.

“We’re excited to be an original member of this distinguished consortium working on this seminal project,” said Bill Diamond, President and CEO of the SETI Institute. “The SETI Institute has accumulated world-class scientific and technical expertise from previous space missions that we can contribute to make Project Blue a success.”

The partnership will combine its expertise to design, construct and operate the mission. Launch services will be provided by one of several commercial vendors expected to be proven by the time of launch.

About BoldlyGo Institute: The BoldlyGo Institute is based in New York and was founded to address highly compelling scientific questions through new approaches to developing space science missions while engaging the global community in the quest. The organization is led by a highly qualified and reputable Board of Directors, comprised of space scientists, engineers and explorers. Board members have decades of combined space involvement, including more than a decade of recent, senior leadership experience across NASA, specializing in spaceflight and the development of space hardware.

About Mission Centaur: Mission Centaur is a nonprofit organization that fosters public and private collaboration through Project Blue, an initiative seeking to find and capture the first image of an Earth-like planet in our neighboring star system Alpha Centauri. Mission Centaur was founded by a group of philanthropists, scientists and engineers to pursue one of humanity’s most ambitious and transformational space exploration missions.

ESO’s VISTA sees stars through the dust

The European Southern Observatory (ESO) latest report:

ESO’s Dustbuster Reveals Hidden Stars

In this new image of the nebula Messier 78, young stars cast a bluish pall over their surroundings, while red fledgling stars peer out from their cocoons of cosmic dust. To our eyes, most of these stars would be hidden behind the dust, but ESO’s Visible and Infrared Survey Telescope for Astronomy (VISTA) sees near-infrared light, which passes right through dust. The telescope is like a giant dustbuster that lets astronomers probe deep into the heart of the stellar environment.

This richly detailed view of the star formation region Messier 78, in the constellation of Orion (The Hunter), was taken with the VISTA infrared survey telescope at ESO’s Paranal Observatory in Chile. As well as the blue regions of reflected light from the hot young stars the image also shows streams of dark dust and the red jets emerging from stars in the process of formation.
This richly detailed view of the star formation region Messier 78, in the constellation of Orion (The Hunter), was taken with the VISTA infrared survey telescope at ESO’s Paranal Observatory in Chile. As well as the blue regions of reflected light from the hot young stars the image also shows streams of dark dust and the red jets emerging from stars in the process of formation. [Larger imagers].
Messier 78, or M78, is a well-studied example of a reflection nebula. It is located approximately 1600 light-years away in the constellation of Orion (The Hunter), just to the upper left of the three stars that make up the belt of this familiar landmark in the sky. In this image, Messier 78 is the central, bluish haze in the centre; the other reflection nebula towards the right goes by the name of NGC 2071. The French astronomer Pierre Méchain is credited with discovering Messier 78 in 1780. However, it is today more commonly known as the 78th entry in French astronomer Charles Messier’s catalogue, added to it in December of 1780.

This zoom sequence opens with a wide-field view of the Milky Way. We close in on the constellation of Orion and, as we zoom in on to a region close to Orion’s famous belt, a fascinating region of dust and reflection nebulosity starts to come into view. The final scene reveals a colourful and richly detailed new image of Messier 78 taken with the VISTA infrared survey telescope at ESO’s Paranal Observatory in Chile. Credit: ESO/S. Brunier/Chris Johnson, (cuttinedgeobservatory.com). Music: Mylonite Recordz Production

When observed with visible light instruments, like ESO’s Wide Field Imager at the La Silla Observatory, Messier 78 appears as a glowing, azure expanse surrounded by dark ribbons (see eso1105). Cosmic dust reflects and scatters the light streaming from the young, bluish stars in Messier 78’s heart, the reason it is known as a reflection nebula.

The dark ribbons are thick clouds of dust that block the visible light originating behind them. These dense, cold regions are prime locations for the formation of new stars. When Messier 78 and its neighbours are observed in the submillimetre light between radio waves and infrared light, for example with the Atacama Pathfinder Experiment (APEX) telescope, they reveal the glow of dust grains in pockets just barely warmer than their extremely cold surroundings (see eso1219). Eventually new stars will form out of these pockets as gravity causes them to shrink and heat up.

These comparison cutouts show how differently parts of this rich star-forming complex in Orion appear at different wavelengths. In the infrared images from the VISTA telescope (lower row) the dust is much more transparent than in the visible light pictures from the MPG/ESO 2.2-metre telescope (upper row).
These comparison cutouts show how differently parts of this rich star-forming complex in Orion appear at different wavelengths. In the infrared images from the VISTA telescope (lower row) the dust is much more transparent than in the visible light pictures from the MPG/ESO 2.2-metre telescope (upper row). [Larger images]
In between visible and submillimetre light lies the near-infrared part of the spectrum, where the Visible and Infrared Survey Telescope for Astronomy (VISTA) provides astronomers with crucial information. Beyond dusty reflections and through thinner portions of obscuring material, the luminous stellar sources within Messier 78 are visible to VISTA’s eyes. In the centre of this image, two blue supergiant stars, called HD 38563A and HD 38563B, shine brightly. Towards the right of the image, the supergiant star illuminating NGC 2071, called HD 290861, is also seen.

This video takes a close-up look at a richly detailed new view of the star formation region Messier 78, in the constellation of Orion (The Hunter), taken with the VISTA infrared survey telescope at ESO’s Paranal Observatory in Chile. As well as the blue regions of reflected light from the hot young stars the image also shows streams of dark dust and the red jets emerging from stars in the process of formation. Credit: ESO/N. Risinger (skysurvey.org). Music: Johan B. Monell (www.johanmonell.com). 

Besides big, blue, hot stars, VISTA can also see many stars that are just forming within the cosmic dust strewn about this region, their reddish and yellow colours shown clearly in this image. These colourful fledgling stars can be found in the dust bands around NGC 2071 and along the trail of dust running towards the left of the image. Some of these are T Tauri stars. Although relatively bright, they are not yet hot enough for nuclear fusion reactions to have commenced in their cores. In several tens of millions of years, they will attain full “starhood”, and will take their place alongside their stellar brethren lighting up the Messier 78 region.

This comparison sequence switches between a visible light view of the reflection nebula Messier 78, and its surroundings, from the WFI camera on the MPG/ESO 2.2-metre telescope, and an infrared view from the VISTA telescope. In the infrared the dust is more transparent and many new features appear. In addition the red jets of material from very young stars can be seen prominently. Credit: ESO/Igor Chekalin. Music: Johan B. Monell (www.johanmonell.com)

Cosmic Watch – An interactive 3D tool for time and more

Check out the Cosmic-Watch app for Android and Apple:

The Cosmic Watch shows the local time at every location worldwide – just touch the place on the depicted globe to indicate the time. The watch is also an astronomical navigator, an armillary sphere (machine of the world), a radix chart, time travel machine, solar system simulator and eclipse detector.

It’s an app that models the Earth, the solar system, and most of the familiar constellations in 3D specifically as they relate to both real time and any point in the past. The COSMIC WATCH is also a fun learning tool to explore the relation between time and the celestial dynamics.