Category Archives: Astronomy

ESO: Observation of titanium oxide in atmosphere of gas giant exoplanet

The latest report from ESO (European Southern Observatory):

Inferno World with Titanium Skies
ESO’s VLT makes first detection of titanium oxide in an exoplanet

An artist’s impression showing the exoplanet WASP-19b, in which atmosphere astronomers detected titanium oxide for the first time. In large enough quantities, titanium oxide can prevent heat from entering or escaping an atmosphere, leading to a thermal inversion — the temperature is higher in the upper atmosphere and lower further down, the opposite of the normal situation. [Larger images.]
Astronomers using ESO’s Very Large Telescope have detected titanium oxide in an exoplanet atmosphere for the first time. This discovery around the hot-Jupiter planet WASP-19b exploited the power of the FORS2 instrument. It provides unique information about the chemical composition and the temperature and pressure structure of the atmosphere of this unusual and very hot world. The results appear today in the journal Nature.

Astronomers using ESO’s Very Large Telescope have detected titanium oxide in an exoplanet atmosphere for the first time. This discovery around the hot-Jupiter planet WASP-19b exploited the power of the FORS2 instrument. It provides unique information about the chemical composition and the temperature and pressure structure of the atmosphere of this unusual and very hot world. The video is available in 4K UHD.

A team of astronomers led by Elyar Sedaghati, an ESO fellow and recent graduate of TU Berlin, has examined the atmosphere of the exoplanet WASP-19b in greater detail than ever before. This remarkable planet has about the same mass as Jupiter, but is so close to its parent star that it completes an orbit in just 19 hours and its atmosphere is estimated to have a temperature of about 2000 degrees Celsius.

Artist impression of the light passing through the atmosphere of the extrasolar planet WASP-19b. Astronomers detected titanium oxide, together with water and traces of sodium, in the atmosphere of the hot-Jupiter planet WASP-19b. Part of the stellar light is absorbed in the atmosphere by these molecules, while other parts get scattered or go through almost unchanged. Credit: ESO/M. Kornmesser

As WASP-19b passes in front of its parent star, some of the starlight passes through the planet’s atmosphere and leaves subtle fingerprints in the light that eventually reaches Earth. By using the FORS2 instrument on the Very Large Telescope the team was able to carefully analyse this light and deduce that the atmosphere contained small amounts of titanium oxide, water and traces of sodium, alongside a strongly scattering global haze.

“Detecting such molecules is, however, no simple feat,” explains Elyar Sedaghati, who spent 2 years as ESO student to work on this project. “Not only do we need data of exceptional quality, but we also need to perform a sophisticated analysis. We used an algorithm that explores many millions of spectra spanning a wide range of chemical compositions, temperatures, and cloud or haze properties in order to draw our conclusions.”

Titanium oxide is rarely seen on Earth. It is known to exist in the atmospheres of cool stars. In the atmospheres of hot planets like WASP-19b, it acts as a heat absorber. If present in large enough quantities, these molecules prevent heat from entering or escaping through the atmosphere, leading to a thermal inversion — the temperature is higher in the upper atmosphere and lower further down, the opposite of the normal situation. Ozone plays a similar role in Earth’s atmosphere, where it causes inversion in the stratosphere.

“The presence of titanium oxide in the atmosphere of WASP-19b can have substantial effects on the atmospheric temperature structure and circulation.” explains Ryan MacDonald, another team member and an astronomer at Cambridge University, United Kingdom. “To be able to examine exoplanets at this level of detail is promising and very exciting.” adds Nikku Madhusudhan from Cambridge University who oversaw the theoretical interpretation of the observations.

The astronomers collected observations of WASP-19b over a period of more than one year. By measuring the relative variations in the planet’s radius at different wavelengths of light that passed through the exoplanet’s atmosphere and comparing the observations to atmospheric models, they could extrapolate different properties, such as the chemical content, of the exoplanet’s atmosphere.

Credit: ESO/http://spaceengine.org. Music: John Dyson

This new information about the presence of metal oxides like titanium oxide and other substances will allow much better modeling of exoplanet atmospheres. Looking to the future, once astronomers are able to observe atmospheres of possibly habitable planets, the improved models will give them a much better idea of how to interpret those observations.

“This important discovery is the outcome of a refurbishment of the FORS2 instrument that was done exactly for this purpose,” adds team member Henri Boffin, from ESO, who led the refurbishment project. “Since then, FORS2 has become the best instrument to perform this kind of study from the ground.”

Project Blue: Crowd-funding a telescope to find habitable worlds

The BoldlyGo Institute and several other institutions are supporting Project Blue, a private initiative to develop a space telescope specialized to look for habitable planets around other stars. The Project has opened a crowd-funding campaign to pay for the design of the spacecraft: Project Blue: A Telescope to Find Habitable Worlds | Indiegogo 

Our generation has a unique opportunity to discover Earthlike planets around other stars, and Project Blue could make this breakthrough. We’re creating detailed plans for the spacecraft, and we want you to be a part of advancing our mission to the Launchpad!

We believe a sister Earth could exist not too far from the place we call home and, thanks to recent breakthroughs, the technology now exists to find out. We at Project Blue aim to search the Alpha Centauri system for planets like Earth, and we want your help to launch our engineering design effort, like creating blueprints for a house before construction begins. We are looking to raise $175,000 to complete this engineering phase and to establish our industry partnerships. And we want to get you involved in the mission right at the start so that, together, we can all take a bold leap into shaping humanity’s future!

The observatory would be much smaller, and much cheaper, than the Hubble or similar big science spacecraft:

Project Blue is a space telescope mission that seeks to find and photograph a habitable world, another Earthlike planet where life can potentially thrive. Our goal is simple — to build & launch a telescope so powerful it can detect a blue planet in the nearby Alpha Centauri star system. Thanks to recent technological innovations, our telescope is small enough to fit on a coffee table, but powerful enough to pick up a planet over a billion times dimmer than its star — from four light years away! With this telescope we aim to take the first ever optical image of a potentially habitable exoplanet, and the team hopes that the results will show a ‘pale blue dot’ similar to the famous photo of Earth taken by the Voyager probe.

With sufficient public support, the spacecraft could go into orbit by 2023:

Videos: Night sky highlights for September 2017

Here is NASA JPL’s latest monthly preview of the night sky, “What’s Up for September 2017”:

And here is the Hubble Space Telescope’s “Tonight’s Sky: September 2017”:

ESO: Radio telescope array detects turbulent reservoirs of cold gas in starburst galaxies

The latest ESO (European Southern Observatory) report:

ALMA Finds Huge Hidden Reservoirs of Turbulent Gas
in Distant Galaxies

This cartoon shows how gas falling into distant starburst galaxies ends up in vast turbulent reservoirs of cool gas extending 30 000 light-years from the central regions. ALMA has been used to detect these turbulent reservoirs of cold gas surrounding similar distant starburst galaxies. By detecting CH+ for the first time in the distant Universe, this research opens up a new window of exploration into a critical epoch of star formation. Credit: ESO/L. Benassi [Larger images]
ALMA has been used to detect turbulent reservoirs of cold gas surrounding distant starburst galaxies. By detecting CH+ for the first time in the distant Universe this research opens up a new window of exploration into a critical epoch of star formation. The presence of this molecule sheds new light on how galaxies manage to extend their period of rapid star formation. The results appear in the journal Nature.

A team led by Edith Falgarone (Ecole Normale Supérieure and Observatoire de Paris, France) has used the Atacama Large Millimeter/submillimeter Array (ALMA) to detect signatures of the carbon hydride molecule CH+ [1] in distant starburst galaxies [2]. The group identified strong signals of CH+ in five out of the six galaxies studied, including the Cosmic Eyelash (eso1012[3]. This research provides new information that helps astronomers understand the growth of galaxies and how a galaxy’s surroundings fuel star formation.

CH+ is a special molecule. It needs a lot of energy to form and is very reactive, which means its lifetime is very short and it can’t be transported far. CH+ therefore traces how energy flows in the galaxies and their surroundings,” said Martin Zwaan, an astronomer at ESO, who contributed to the paper.

How CH+ traces energy can be thought of by analogy to being on a boat in a tropical ocean on a dark, moonless night. When the conditions are right, fluorescent plankton can light up around the boat as it sails. The turbulence caused by the boat sliding through the water excites the plankton to emit light, which reveals the existence of the the turbulent regions in the underlying dark water. Since CH+ forms exclusively in small areas where turbulent motions of gas dissipates, its detection in essence traces energy on a galactic scale.

This zoom sequence starts from a broad view of the sky and takes the viewer deep into the constellation of Aquarius (The Water Bearer). We pass the globular star cluster Messier 2 and go far beyond the galaxy into a distant cluster of galaxies. There we see a curious arc, a gravitationally lensed version of an even more distant galaxy, nicknamed the Cosmic Eyelash, seen using ALMA. Credit: ALMA (ESO/NAOJ/NRAO), DSS, Hubble. Music: Astral Electronic

The observed CH+ reveals dense shock waves, powered by hot, fast galactic winds originating inside the galaxies’ star forming regions. These winds flow through a galaxy, and push material out of it, but their turbulent motions are such that part of the material can be re-captured by the gravitational pull of the galaxy itself. This material gathers into huge turbulent reservoirs of cool, low-density gas, extending more than 30 000 light-years from the galaxy’s star forming region [4].

With CH+, we learn that energy is stored within vast galaxy-sized winds and ends up as turbulent motions in previously unseen reservoirs of cold gas surrounding the galaxy,” said Falgarone, who is lead author of the new paper. “Our results challenge the theory of galaxy evolution. By driving turbulence in the reservoirs, these galactic winds extend the starburst phase instead of quenching it.

The team determined that galactic winds alone could not replenish the newly revealed gaseous reservoirs and suggests that the mass is provided by galactic mergers or accretion from hidden streams of gas, as predicted by current theory.

This discovery represents a major step forward in our understanding of how the inflow of material is regulated around the most intense starburst galaxies in the early Universe,” says ESO’s Director for Science, Rob Ivison, a co-author on the paper. “It shows what can be achieved when scientists from a variety of disciplines come together to exploit the capabilities of the world’s most powerful telescope.

This ALMA image shows the Cosmic Eyelash, a remote starburst galaxy that appears double and brightened by gravitational lensing. ALMA has been used to detect turbulent reservoirs of cold gas surrounding this and other distant starburst galaxies. By detecting CH+ for the first time in the distant Universe, this research opens up a new window of exploration into a critical epoch of star formation. [Larger Images]
Notes

[1] CH+ is an ion of the CH molecule known as methylidynium to chemists. It is one of the first three molecules ever discovered in the interstellar medium. Since its discovery in the early 1940s, the presence of CH+ in interstellar space has been a mystery because it is extremely reactive and hence disappears more quickly than other molecules.

[2] These galaxies are known for a much higher rate of star formation compared to sedate Milky Way-like galaxies, making these structures ideal to study galaxy growth and the interplay between gas, dust, stars, and the black holes at the centres of galaxies.

[3] ALMA was used to obtain spectra of each galaxy. A spectrum is a record of light, typically of an astronomical object, split into its different colours (or wavelengths), in much the same way that rain droplets disperse light to form a rainbow. Since every element has a unique “fingerprint” in a spectrum, spectra can be used to determine the chemical composition of observed objects.

[4] These turbulent reservoirs of diffuse gas may be of the same nature as the giant glowing haloes seen around distant quasars.

====

ESO: Best image ever of the surface and atmosphere of a distant star

The latest report from ESO (European Southern Observatory):

Best Ever Image of a Star’s Surface and Atmosphere
First map of motion of material on a star other than the Sun

Using ESO’s Very Large Telescope Interferometer astronomers have constructed this remarkable image of the red supergiant star Antares. This is the most detailed image ever of this object, or any other star apart from the Sun. [Larger images]
Using ESO’s Very Large Telescope Interferometer astronomers have constructed the most detailed image ever of a star — the red supergiant star Antares. They have also made the first map of the velocities of material in the atmosphere of a star other than the Sun, revealing unexpected turbulence in Antares’s huge extended atmosphere. The results were published in the journal Nature.

Using ESO’s Very Large Telescope Interferometer astronomers have constructed the most detailed image ever of a star — the red supergiant star Antares. They have also made the first map of the velocities of material the atmosphere of a star other than the Sun, revealing unexpected turbulence in Antares’s huge extended atmosphere. This short ESOcast takes a quick look at this remarkable result.

To the unaided eye the famous, bright star Antares shines with a strong red tint in the heart of the constellation of Scorpius (The Scorpion). It is a huge and comparatively cool red supergiant star in the late stages of its life, on the way to becoming a supernova [1].

A team of astronomers, led by Keiichi Ohnaka, of the Universidad Católica del Norte in Chile, has now used ESO’s Very Large Telescope Interferometer (VLTI) at the Paranal Observatory in Chile to map Antares’s surface and to measure the motions of the surface material. This is the best image of the surface and atmosphere of any star other than the Sun.

Using ESO’s Very Large Telescope Interferometer astronomers have constructed this remarkable map of the motions of material on the surface of the red supergiant star Antares. This is the first such velocity map of any star other than the Sun. In red regions the material is moving away from us and in the blue areas the material is approaching. The empty region around the star is not a real feature, but shows where velocity measurements were not possible. [Larger image.]
The VLTI is a unique facility that can combine the light from up to four telescopes, either the 8.2-metre Unit Telescopes, or the smaller Auxiliary Telescopes, to create a virtual telescope equivalent to a single mirror up to 200 metres across. This allows it to resolve fine details far beyond what can be seen with a single telescope alone.

How stars like Antares lose mass so quickly in the final phase of their evolution has been a problem for over half a century,” said Keiichi Ohnaka, who is also the lead author of the paper. “The VLTI is the only facility that can directly measure the gas motions in the extended atmosphere of Antares — a crucial step towards clarifying this problem. The next challenge is to identify what’s driving the turbulent motions.”

Using the new results the team has created the first two-dimensional velocity map of the atmosphere of a star other than the Sun. They did this using the VLTI with three of the Auxiliary Telescopes and an instrument called AMBER to make separate images of the surface of Antares over a small range of infrared wavelengths. The team then used these data to calculate the difference between the speed of the atmospheric gas at different positions on the star and the average speed over the entire star [2]. This resulted in a map of the relative speed of the atmospheric gas across the entire disc of Antares — the first ever created for a star other than the Sun.

This video starts from a wide field view of the Milky Way, including the prominent constellation of Scorpius (The Scopion). It zooms in towards Scorpius’s bright red heart — the red supergiant star Antares. The final view shows an image of the surface of Antares — the best ever of any star other than the Sun — taken with ESO’s Very Large Telescope Interferometer. Credit: ESO/K. Ohnaka/N. Risinger (skysurvey.org). Music:  astral electronic.

The astronomers found turbulent, low-density gas much further from the star than predicted, and concluded that the movement could not result from convection [3], that is, from large-scale movement of matter which transfers energy from the core to the outer atmosphere of many stars. They reason that a new, currently unknown, process may be needed to explain these movements in the extended atmospheres of red supergiants like Antares.

In the future, this observing technique can be applied to different types of stars to study their surfaces and atmospheres in unprecedented detail. This has been limited to just the Sun up to now,” concludes Ohnaka. “Our work brings stellar astrophysics to a new dimension and opens an entirely new window to observe stars.

This 3D simulation shows a travel from Earth to the red supergiant Antares, in the constellation of Scorpius. Credit: spaceengine.org

Notes

[1] Antares is considered by astronomers to be a typical red supergiant. These huge dying stars are formed with between nine and 40 times the mass of the Sun. When a star becomes a red supergiant, its atmosphere extends outward so it becomes large and luminous, but low-density. Antares now has a mass about 12 times that of the Sun and a diameter about 700 times larger than the Sun’s. It is thought that it started life with a mass more like 15 times that of the Sun, and has shed three solar-masses of material during its life.

[2] The velocity of material towards or away from Earth can be measured by the Doppler Effect, which shifts spectral lines either towards the red or blue ends of the spectrum, depending on whether the material emitting or absorbing light is receding from or approaching the observer.

[3] Convection is the process whereby cold material moves downwards and hot material moves upwards in a circular pattern. The process occurs on Earth in the atmosphere and ocean currents, but it also moves gas around within stars.