Category Archives: Astronomy

ESO: A Sharpless stellar nursery comes into focus

The latest report from ESO (European Souther Observatory):

Stellar Nursery Blooms into View

The OmegaCAM imager on ESO’s VLT Survey Telescope has captured this glittering view of the stellar nursery called Sharpless 29. Many astronomical phenomena can be seen in this giant image, including cosmic dust and gas clouds that reflect, absorb, and re-emit the light of hot young stars within the nebula. [Full size image.]
The OmegaCAM camera on ESO’s VLT Survey Telescope has captured this glittering view of the stellar nursery called Sharpless 29. Many astronomical phenomena can be seen in this giant image, including cosmic dust and gas clouds that reflect, absorb, and re-emit the light of hot young stars within the nebula.

The region of sky pictured is listed in the Sharpless catalogue of H II regions: interstellar clouds of ionised gas, rife with star formation. Also known as Sh 2-29, Sharpless 29 is located about 5500 light-years away in the constellation of Sagittarius (The Archer), next door to the larger Lagoon Nebula. It contains many astronomical wonders, including the highly active star formation site of NGC 6559, the nebula at the centre of the image.

https://youtu.be/5w0cKbIREe4

This central nebula is Sharpless 29’s most striking feature. Though just a few light-years across, it showcases the havoc that stars can wreak when they form within an interstellar cloud. The hot young stars in this image are no more than two million years old and are blasting out streams of high-energy radiation. This energy heats up the surrounding dust and gas, while their stellar winds dramatically erode and sculpt their birthplace. In fact, the nebula contains a prominent cavity that was carved out by an energetic binary star system. This cavity is expanding, causing the interstellar material to pile up and create the reddish arc-shaped border.

When interstellar dust and gas are bombarded with ultraviolet light from hot young stars, the energy causes them to shine brilliantly. The diffuse red glow permeating this image comes from the emission of hydrogen gas, while the shimmering blue light is caused by reflection and scattering off small dust particles. As well as emission and reflection, absorption takes place in this region. Patches of dust block out the light as it travels towards us, preventing us from seeing the stars behind it, and smaller tendrils of dust create the dark filamentary structures within the clouds.

This very rich region of the Milky Way in the constellation of Sagittarius (The Archer) includes huge numbers of stars as well as several spectacular regions of star formation. At the centre lies Sharpless 29, which includes NGC 6559. To the right lies the very bright and famous Lagoon Nebula (Messier 8) and at the upper-right the Triffid Nebula (Messier 20) can be seen. This picture was created from images in the Digitized Sky Survey 2. Credit: ESO/Digitized Sky Survey 2 [Full size image.]
The rich and diverse environment of Sharpless 29 offers astronomers a smorgasbord of physical properties to study. The triggered formation of stars, the influence of the young stars upon dust and gas, and the disturbance of magnetic fields can all be observed and examined in this single area.

But young, massive stars live fast and die young. They will eventually explosively end their lives in a supernova, leaving behind rich debris of gas and dust. In tens of millions of years, this will be swept away and only an open cluster of stars will remain.

Sharpless 29 was observed with ESO’s OmegaCAM on the VLT Survey Telescope (VST) at Cerro Paranal in Chile. OmegaCAM produces images that cover an area of sky more than 300 times greater than the largest field of view imager of the NASA/ESA Hubble Space Telescope, and can observe over a wide range of wavelengths from the ultraviolet to the infrared. Its hallmark feature is its ability to capture the very red spectral line H-alpha, created when the electron inside a hydrogen atom loses energy, a prominent occurrence in a nebula like Sharpless 29.

More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and by Australia as a strategic partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.

Links

====

Video: “A Planet for Goldilocks: Kepler & the Search for Living Worlds” – Dr. Natalie Batalha

Dr. Natalie Batalha of NASA’s Kepler Mission Project gives a public lecture about A Planet for Goldilocks: Kepler & the Search for Living Worlds

NASA’s Kepler Mission launched in 2009 with the objective of finding “Goldilocks planets” orbiting other stars like our Sun. The space telescope opened our eyes to the many terrestrial-sized planets that populate the galaxy (including several right in our neighborhood,) as well as to exotic worlds unlike anything that exists in the solar system. Dr. Batalha gives an overview of the science legacy of the Kepler Mission and other key planet discoveries (including some results only a few weeks old). She also gives a preview of planet-finding missions to come.

====

ESO: EXPRESSO next-gen planet hunter gets first light from the Very Large Telescope (VLT) in Chile

The latest report from ESO:

First Light for ESPRESSO — the Next Generation Planet Hunter

This colourful image shows spectral data from the First Light of the ESPRESSO instrument on ESO’s Very Large Telescope in Chile. The light from a star has been dispersed into its component colours. This view has been colourised to indicate how the wavelengths change across the image, but these are not exactly the colours that would be seen visually. Close inspection shows many dark spectral lines in the stellar spectra and also the regular double spots from a calibration light source. The dark gaps are features of how the data is taken, and are not real.

The Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) has successfully made its first observations. Installed on ESO’s Very Large Telescope (VLT) in Chile, ESPRESSO will search for exoplanets with unprecedented precision by looking at the minuscule changes in the light of their host stars. For the first time ever, an instrument will be able to sum up the light from all four VLT telescopes and achieve the light collecting power of a 16-metre telescope.

ESPRESSO has achieved first light on ESO’s Very Large Telescope at the Paranal Observatory in northern Chile [1]. This new, third-generation echelle spectrograph is the successor to ESO’s hugely successful HARPS instrument at the La Silla Observatory. HARPS can attain a precision of around one metre per second in velocity measurements, whereas ESPRESSO aims to achieve a precision of just a few centimetres per second, due to advances in technology and its placement on a much bigger telescope.

The lead scientist for ESPRESSO, Francesco Pepe from the University of Geneva in Switzerland, explains its significance:

“This success is the result of the work of many people over 10 years. ESPRESSO isn’t just the evolution of our previous instruments like HARPS, but it will be transformational, with its higher resolution and higher precision. And unlike earlier instruments it can exploit the VLT’s full collecting power — it can be used with all four of the VLT Unit Telescopes at the same time to simulate a 16-metre telescope. ESPRESSO will be unsurpassed for at least a decade — now I am just impatient to find our first rocky planet!”

ESPRESSO can detect tiny changes in the spectra of stars as a planet orbits. This radial velocity method works because a planet’s gravitational pull influences its host star, causing it to “wobble” slightly. The less massive the planet, the smaller the wobble, and so for rocky and possibly life-bearing exoplanets to be detected, an instrument with very high precision is required. With this method, ESPRESSO will be able to detect some of the lightest planets ever found [2].

The Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) successfully made its first observations in November 2017. Installed on ESO’s Very Large Telescope (VLT) in Chile, ESPRESSO will search for exoplanets with unprecedented precision by looking at the minuscule changes in the properties of light coming from their host stars. For the first time ever, an instrument will be able to sum up the light from all four VLT telescopes and achieve the light collecting power of a 16-metre telescope. This picture shows a group picture of the happy first light team on the platform at Paranal, with the VLT in the background.

The test observations included observations of stars and known planetary systems. Comparisons with existing HARPS data showed that ESPRESSO can obtain similar quality data with dramatically less exposure time.

Instrument scientist Gaspare Lo Curto (ESO) is delighted:

“Bringing ESPRESSO this far has been a great accomplishment, with contributions from an international consortium as well as many different groups within ESO: engineers, astronomers and administration. They had to not just install the spectrograph itself, but also the very complex optics that bring the light together from the four VLT Unit Telescopes.”

Although the main goal of ESPRESSO is to push planet hunting to the next level, finding and characterising less massive planets and their atmospheres, it also has many other applications. ESPRESSO will also be the world’s most powerful tool to test whether the physical constants of nature have changed since the Universe was young. Such tiny changes are predicted by some theories of fundamental physics, but have never been convincingly observed.

When ESO’s Extremely Large Telescope comes on line, the instrument HIRES, which is currently under conceptual design, will enable the detection and characterisation of even smaller and lighter exoplanets, down to Earth-like planets, as well as the study of exoplanet atmospheres with the prospect of the detection of signatures of life on rocky planets.

Notes
[1] ESPRESSO was designed and built by a consortium consisting of: the Astronomical Observatory of the University of Geneva and University of Bern, Switzerland; INAF–Osservatorio Astronomico di Trieste and INAF–Osservatorio Astronomico di Brera, Italy; Instituto de Astrofísica de Canarias, Spain; Instituto de Astrofisica e Ciências do Espaço, Universidade do Porto and Universidade de Lisboa, Portugal; and ESO. The co-principal investigators are Francesco Pepe (University of Geneva, Switzerland), Stefano Cristiani (INAF–Osservatorio Astronomico di Trieste, Italy), Rafael Rebolo (IAC, Tenerife, Spain) and Nuno Santos (Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, Portugal).

[2] The radial velocity method allows astronomers to measure the mass and orbit of the planet. Combined with other methods such as the transit method, more information can be inferred — for example, the size and density of the exoplanet. The Next-Generation Transit Survey (NGTS) at ESO’s Paranal Observatory hunts for exoplanets in this way.

Weather satellite image reception with tracking antenna on a converted telescope mount

Here are links to a set of How-To postings on receiving weather satellite images with a low cost home system that includes the conversion of a telescope mount into an automated antenna that follows weather satellites across the sky:

Sample APT image: “NOAA 19 northbound 59W at 13 Sep 2017 21:42:42 GMT on 137.10MHz, HVCT enhancement, Normal projection, Channel A: 2 (near infrared), Channel B: 4 (thermal infrared)”.
A sample HRPT weather satellite image.
Meade Instruments automated mount with telescope replaced by yagi antenna.
Image obtained from the GEOS 13 satellite.

See also the HobbySpace Space Radio section for more about amateur satellite communications.

====

Videos: Highlights in the night sky for December 2017

** NASA JPL: What’s Up for December 2017?

** Tonight’s Sky: December 2017 – Hubble Space Telescope

** NASA: Super Moons Trilogy:

A series of three supermoons will appear on the celestial stage on December 3, 2017, January 1, 2018, and January 31, 2018. Visit http://science.nasa.gov/ for more.

====