Category Archives: Space Science

Mars Reconnaissance Orbiter reaches 10 year milestone

This video shows a small sample of the many magnificent images of the Martian surface taken by the Mars Reconnaissance Orbiter MRO during its first 10 years of operation:

NASA’s Mars Reconnaissance Orbiter has clocked more than a decade of service at the Red Planet and has yielded scientific discoveries and magnificent views of a distant world. These images taken by MRO’s HiRISE camera are not in true color because they are optimized for geological science.

Here is a release from NASA noting the 10 year milestone:

Ten Years of Discovery by Mars Reconnaissance Orbiter

True to its purpose, the big NASA spacecraft that began orbiting Mars a decade ago this week has delivered huge advances in knowledge about the Red Planet.

NASA’s Mars Reconnaissance Orbiter (MRO) has revealed in unprecedented detail a planet that held diverse wet environments billions of years ago and remains dynamic today.

One example of MRO’s major discoveries was published last year, about the possibility of liquid water being present seasonally on present-day Mars.  It drew on three key capabilities researchers gained from this mission: telescopic camera resolution to find features narrower than a driveway; spacecraft longevity to track seasonal changes over several Martian years; and imaging spectroscopy to map surface composition.

pia20167_esp_043961_1740-excerpt[1]
NASA’s Mars Reconnaissance Orbiter, nearing the 10th anniversary of its arrival at Mars, used its High Resolution Imaging Science Experiment (HiRISE) camera to obtain this view of an area with unusual texture on the southern floor of Gale Crater. Credits: NASA/JPL-Caltech/Univ. of Arizona
Other discoveries have resulted from additional capabilities of the orbiter. These include identifying underground geologic structures, scanning atmospheric layers and observing the entire planet’s weather daily. All six of the orbiter’s science instruments remain productive in an extended mission more than seven years after completion of the mission’s originally planned primary science phase.

“This mission has helped us appreciate how much Mars — a planet that has changed greatly over time — continues to change today,” said MRO Project Scientist Rich Zurek of NASA’s Jet Propulsion Laboratory, Pasadena, California. JPL manages the mission.

Data from MRO have improved knowledge about three distinct periods on Mars. Observations of the oldest surfaces on the planet show that diverse types of watery environments existed — some more favorable for life than others. More recently, water cycled as a gas between polar ice deposits and lower-latitude deposits of ice and snow, generating patterns of layering linked to cyclical changes similar to ice ages on Earth.

mro-infographic-by-the-numbers[1]

Dynamic activity on today’s Mars includes fresh craters, avalanches, dust storms, seasonal freezing and thawing of carbon dioxide sheets, and summertime seeps of brine.

The mission provides three types of crucial support for rover and stationary lander missions to Mars. Its observations enable careful evaluation of potential landing sites. They also help rover teams choose routes and destinations. Together with NASA’s Mars Odyssey, which has been orbiting Mars since 2001, MRO relays data from robots on Mars’ surface to NASA Deep Space Network antennas on Earth, multiplying the productivity of the surface missions.

The mission has been investigating areas proposed as landing sites for future human missions in NASA’s Journey to Mars.

“The Mars Reconnaissance Orbiter remains a powerful asset for studying the Red Planet, with its six instruments all continuing capably a decade after orbit insertion. All this and the valuable infrastructure support that it provides for other Mars missions, present and future, make MRO a keystone of the current Mars Exploration Program,” said Zurek.

Arrival at Mars

On March 10, 2006, the spacecraft fired its six largest rocket engines for about 27 minutes, slowing it down enough for the gravity of Mars to catch it into orbit. Those engines had been used only once before, for 15 seconds during the first trajectory adjustment during the seven-month flight from Earth to Mars. They have been silent since arrival day. Smaller engines provide thrust for orbit adjustment maneuvers.

For its first three weeks at Mars, the spacecraft flew elongated, 35-hour orbits ranging as far as 27,000 miles (43,000 kilometers) from the Red Planet. During the next six months, a process called aerobraking used hundreds of carefully calculated dips into the top of the Martian atmosphere to gradually adjust the size of the orbit. Since September 2006, the craft has been flying nearly circular orbits lasting about two hours, at altitudes from 155 to 196 miles (250 to 316 kilometers).

The spacecraft’s two large solar panels give MRO a wingspan the length of a school bus. That surface area helped with atmospheric drag during aerobraking and still cranks out about 2,000 watts of electricity when the panels face the sun. Generous power enables the spacecraft to transmit a torrent of data through its main antenna, a dish 10 feet (3 meters) in diameter. The total science data sent to Earth from MRO — 264 terabits — is more than all other interplanetary missions combined, past and present.

Lockheed Martin Space Systems, Denver, built the spacecraft with the capability to transmit copious data to suit the science goals of revealing Mars in great detail, which requires plenty of data.

For example, the mission’s High Resolution Imaging Science Experiment (HiRISE) camera, managed by the University of Arizona, Tucson, has returned images that show features as small as a desk anywhere in observations that now have covered about 2.4 percent of the Martian surface, an area equivalent to two Alaskas, with many locations imaged repeatedly. The Context Camera (CTX), managed by Malin Space Systems, San Diego, has imaged more than 95 percent of Mars, with resolution showing features smaller than a tennis court. The Compact Reconnaissance Imaging Spectrometer (CRISM), managed by Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, also has imaged nearly 98 percent of the planet in multiple visual-light and infrared wavelengths, providing composition information at scales of 100 to 200 yards or meters per pixel.

For more information about MRO, visit:

For more information about NASA’s journey to Mars, visit: www.nasa.gov/topics/journeytomars

New Horizons: Charon’s underground ocean stretches the surface

Checking in on the New Horizons probe to see its latest discovery:

Pluto’s ‘Hulk-like’ Moon Charon: A Possible Ancient Ocean?

Pluto’s largest moon may have gotten too big for its own skin.

Charon_SerenityChasma_Context_02182016_Melded[1]
Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Images from NASA’s New Horizons mission suggest that Charon once had a subsurface ocean that has long since frozen and expanded, pushing out on the moon’s surface and causing it to stretch and fracture on a massive scale.

The side of Charon viewed by the passing New Horizons spacecraft in July 2015 is characterized by a system of “pull apart” tectonic faults, which are expressed as ridges, scarps and valleys—the latter sometimes reaching more than 4 miles (6.5 kilometers) deep. Charon’s tectonic landscape shows that, somehow, the moon expanded in its past, and – like Bruce Banner tearing his shirt as he becomes the Incredible Hulk – Charon’s surface fractured as it stretched.

Charon’s outer layer is primarily water ice. When the moon was young this layer was warmed by the decay of radioactive elements, as well as Charon’s own internal heat of formation. Scientists say Charon could have been warm enough to cause the water ice to melt deep down, creating a subsurface ocean. But as Charon cooled over time, this ocean would have frozen and expanded (as happens when water freezes), pushing the surface outward and producing the massive chasms we see today.

This image focuses on a section of the feature informally named Serenity Chasma, part of a vast equatorial belt of chasms on Charon. In fact, this system of chasms is one of the longest seen anywhere in the solar system, running at least 1,100 miles (about 1,800 kilometers) long and reaching 4.5 miles (7.5 kilometers) deep. By comparison, the Grand Canyon is 277 miles (446 kilometers) long and just over a mile (1.6 kilometers) deep.

The lower portion of the image shows color-coded topography of the same scene. Measurements of the shape of this feature tell scientists that Charon’s water-ice layer may have been at least partially liquid in its early history, and has since refrozen.

This image was obtained by the Long-Range Reconnaissance Imager (LORRI) on New Horizons. North is up; illumination is from the top-left of the image. The image resolution is about 1,290 feet (394 meters) per pixel. The image measures 240 miles (386 kilometers) long and 110 miles (175 kilometers) wide. It was obtained at a range of approximately 48,900 miles (78,700 kilometers) from Charon, about an hour and 40 minutes before New Horizons’ closest approach to Charon on July 14, 2015.

Send your artwork to an asteroid

The OSIRIS-REx mission aims to explore an asteroid and bring back a sample of it back to earth. If you submit “a sketch, photograph, graphic, poem, song, short video or other creative or artistic expression” to the We The Explorers outreach program and it will be digitized and sent along with the spacecraft in a memory chip.

NASA Invites Public to Send Artwork to an Asteroid

NASA is calling all space enthusiasts to send their artistic endeavors on a journey aboard NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft. This will be the first U.S. mission to collect a sample of an asteroid and return it to Earth for study.

WeTheExplorers-NASAgovOREx[1]

OSIRIS-REx is scheduled to launch in September and travel to the asteroid Bennu. The #WeTheExplorers campaign invites the public to take part in this mission by expressing, through art, how the mission’s spirit of exploration is reflected in their own lives. Submitted works of art will be saved on a chip on the spacecraft. The spacecraft already carries a chip with more than 442,000 names submitted through the 2014 “Messages to Bennu” campaign.

“The development of the spacecraft and instruments has been a hugely creative process, where ultimately the canvas is the machined metal and composites preparing for launch in September,” said Jason Dworkin, OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It is fitting that this endeavor can inspire the public to express their creativity to be carried by OSIRIS-REx into space.”

16-019[1]

A submission may take the form of a sketch, photograph, graphic, poem, song, short video or other creative or artistic expression that reflects what it means to be an explorer. Submissions will be accepted via Twitter and Instagram until March 20. For details on how to include your submission on the mission to Bennu, go to:

http://www.asteroidmission.org/WeTheExplorers

“Space exploration is an inherently creative activity,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “We are inviting the world to join us on this great adventure by placing their art work on the OSIRIS-REx spacecraft, where it will stay in space for millennia.”

The spacecraft will voyage to the near-Earth asteroid Bennu to collect a sample of at least 60 grams (2.1 ounces) and return it to Earth for study. Scientists expect Bennu may hold clues to the origin of the solar system and the source of the water and organic molecules that may have made their way to Earth.

Goddard provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. The University of Arizona, Tucson leads the science team and observation planning and processing. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program.  NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency’s Science Mission Directorate in Washington.

For more information on OSIRIS-Rex, visit: www.nasa.gov/osiris-rex

===

A video about the Bennu asteroid:

How might life have come to Earth? Why is asteroid Bennu an important key to answering this question? Journey with us through the story of Bennu and see how it may help us unlock this timeless mystery. Bennu’s Journey combines the latest scientific theories on the origin of the solar system with stunning computer graphics from the Goddard Space Flight Center Conceptual Image Lab and an original score from Tucson composer Ian Zickler. The result is a blend of art and science that tells the story of how asteroid Bennu arrived in near-Earth space and highlights the questions that the OSIRIS-REx mission seeks to answer.

Video: Planetary Post – Feb.2016

The Planetary Society has debuted a new monthly video report called Planetary Post with Robert Picardo as the host. You can register at Connect to get an email when the latest Post is available. Here is the first show:

Video: Curiosity rover’s panoramic view of the Namib Dune on Mars

Drag the cursor on this image to see the 360 degree view of the Namib Dune on Mars where the Curiosity rover was exploring in December:

Full-Circle Panorama Beside ‘Namib Dune’ on Mars

This view of the downwind face of “Namib Dune” on Mars covers 360 degrees, including a portion of Mount Sharp on the horizon. The site is part of the dark-sand “Bagnold Dunes” field along the northwestern flank of Mount Sharp. Images taken from orbit indicate that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year.

The component images of this scene were taken on Dec. 18, 2015, by the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover during the 1,197th Martian day, or sol, of the rover’s work on Mars.

The bottom of the dune nearest the rover is about 23 feet (7 meters) from the camera. This downwind face of the dune rises at an inclination of about 28 degrees to a height of about 16 feet (5 meters) above the base. The center of the scene is toward the east; both ends are toward the west.

A color adjustment has been made approximating a white balance, so that rocks and sand appear approximately as they would appear under Earth’s sunlit sky. A brightness adjustment accommodates including rover hardware in the scene.

The mission’s examination of dunes in the Bagnold field, along the rover’s route up the lower slope of Mount Sharp, is the first close look at active sand dunes anywhere other than Earth.

Malin Space Science Systems, San Diego, built and operates the rover’s Mastcam. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.

For more information about Curiosity, visit http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl/.

Photojournal Note: Also available is the full resolution TIFF file PIA20284_full.tif. This file may be too large to view from a browser; it can be downloaded onto your desktop by right-clicking on the previous link and viewed with image viewing software.