Juno: From Jupiter’s deep jet-streams to the equatorial twilight zone

A couple of items from the Juno mission at Jupiter:

NASA Juno Findings – Jupiter’s Jet-Streams Are Unearthly

For hundreds of years, this gaseous giant planet appeared shrouded in colorful bands of clouds extending from dusk to dawn, referred to as zones and belts. The bands were thought to be an expression of Jovian weather, related to winds blowing eastward and westward at different speeds. This animation illustrates a recent discovery by Juno that demonstrates these east-west flows, also known as jet-streams penetrate deep into the planet’s atmosphere, to a depth of about 1,900 miles (3,000 kilometers). Due to Jupiter’s rapid rotation (Jupiter’s day is about 10 hours), these flows extend into the interior parallel to Jupiter’s axis of rotation, in the form of nested cylinders. Below this layer the flows decay, possibly slowed by Jupiter’s strong magnetic field. The depth of these flows surprised scientists who estimate the total mass involved in these jet streams to be about 1% of Jupiter’s mass (Jupiter’s mass is over 300 times that of Earth). This discovery was revealed by the unprecedented accuracy of Juno’s measurements of the gravity field. Credits: NASA/JPL-Caltech/SwRI/ASI

Data collected by NASA’s Juno mission to Jupiter indicate that the atmospheric winds of the gas-giant planet run deep into its atmosphere and last longer than similar atmospheric processes found here on Earth. The findings will improve understanding of Jupiter’s interior structure, core mass and, eventually, its origin.

Other Juno science results released today include that the massive cyclones that surround Jupiter’s north and south poles are enduring atmospheric features and unlike anything else encountered in our solar system. The findings are part of a four-article collection on Juno science results being published in the March 8 edition of the journal Nature.

“These astonishing science results are yet another example of Jupiter’s curve balls, and a testimony to the value of exploring the unknown from a new perspective with next-generation instruments.  Juno’s unique orbit and evolutionary high-precision radio science and infrared technologies enabled these paradigm-shifting discoveries,” said Scott Bolton, principal investigator of Juno from the Southwest Research Institute, San Antonio. “Juno is only about one third the way through its primary mission, and already we are seeing the beginnings of a new Jupiter.”

The depth to which the roots of Jupiter’s famous zones and belts extend has been a mystery for decades. Gravity measurements collected by Juno during its close flybys of the planet have now provided an answer.

“Juno’s measurement of Jupiter’s gravity field indicates a north-south asymmetry, similar to the asymmetry observed in its zones and belts,” said Luciano Iess, Juno co-investigator from Sapienza University of Rome, and lead author on a Nature paper on Jupiter’s gravity field.

On a gas planet, such an asymmetry can only come from flows deep within the planet; and on Jupiter, the visible eastward and westward jet streams are likewise asymmetric north and south. The deeper the jets, the more mass they contain, leading to a stronger signal expressed in the gravity field. Thus, the magnitude of the asymmetry in gravity determines how deep the jet streams extend.

This computer-generated image is based on an infrared image of Jupiter’s north polar region that was acquired on February 2, 2017, by the Jovian Infrared Auroral Mapper (JIRAM) instrument aboard Juno during the spacecraft’s fourth pass over Jupiter. Credits: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM. Full image and caption

“Galileo viewed the stripes on Jupiter more than 400 years ago,” said Yohai Kaspi, Juno co-investigator from the Weizmann Institute of Science, Rehovot, Israel, and lead author of a Nature paper on Jupiter’s deep weather layer. “Until now, we only had a superficial understanding of them and have been able to relate these stripes to cloud features along Jupiter’s jets. Now, following the Juno gravity measurements, we know how deep the jets extend and what their structure is beneath the visible clouds. It’s like going from a 2-D picture to a 3-D version in high definition.”

The result was a surprise for the Juno science team because it indicated that the weather layer of Jupiter was more massive, extending much deeper than previously expected. The Jovian weather layer, from its very top to a depth of 1,900 miles (3,000 kilometers), contains about one percent of Jupiter’s mass (about 3 Earth masses).

“By contrast, Earth’s atmosphere is less than one millionth of the total mass of Earth,” said Kaspi “The fact that Jupiter has such a massive region rotating in separate east-west bands is definitely a surprise.”

The finding is important for understanding the nature and possible mechanisms driving these strong jet streams. In addition, the gravity signature of the jets is entangled with the gravity signal of Jupiter’s core.

Another Juno result released today suggests that beneath the weather layer, the planet rotates nearly as a rigid body.

“This is really an amazing result, and future measurements by Juno will help us understand how the transition works between the weather layer and the rigid body below,” said Tristan Guillot, a Juno co-investigator from the Université Côte d’Azur, Nice, France, and lead author of the paper on Jupiter’s deep interior. “Juno’s discovery has implications for other worlds in our solar system and beyond. Our results imply that the outer differentially-rotating region should be at least three times deeper in Saturn and shallower in massive giant planets and brown dwarf stars.”

A truly striking result released in the Nature papers is the beautiful new imagery of Jupiter’s poles captured by Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument. Imaging in the infrared part of the spectrum, JIRAM captures images of light emerging from deep inside Jupiter equally well, night or day. JIRAM probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below Jupiter’s cloud tops.

“Prior to Juno we did not know what the weather was like near Jupiter’s poles. Now, we have been able to observe the polar weather up-close every two months,” said Alberto Adriani, Juno co-investigator from the Institute for Space Astrophysics and Planetology, Rome, and lead author of the paper. “Each one of the northern cyclones is almost as wide as the distance between Naples, Italy and New York City — and the southern ones are even larger than that. They have very violent winds, reaching, in some cases, speeds as great as 220 mph (350 kph). Finally, and perhaps most remarkably, they are very close together and enduring. There is nothing else like it that we know of in the solar system.”

Jupiter’s poles are a stark contrast to the more familiar orange and white belts and zones encircling the planet at lower latitudes. Its north pole is dominated by a central cyclone surrounded by eight circumpolar cyclones with diameters ranging from 2,500 to 2,900 miles (4,000 to 4,600 kilometers) across. Jupiter’s south pole also contains a central cyclone, but it is surrounded by five cyclones with diameters ranging from 3,500 to 4,300 miles (5,600 to 7,000 kilometers) in diameter. Almost all the polar cyclones, at both poles, are so densely packed that their spiral arms come in contact with adjacent cyclones. However, as tightly spaced as the cyclones are, they have remained distinct, with individual morphologies over the seven months of observations detailed in the paper.

“The question is, why do they not merge?” said Adriani. “We know with Cassini data that Saturn has a single cyclonic vortex at each pole. We are beginning to realize that not all gas giants are created equal.”

Abstracts of the March 8 Juno papers can be found online:

To date, Juno has completed 10 science passes over Jupiter and logged almost 122 million miles (200 million kilometers), since entering Jupiter’s orbit on July 4, 2016. Juno’s 11th science pass will be on April 1.

Juno launched on Aug. 5, 2011, from Cape Canaveral, Florida. During its mission of exploration, Juno soars low over the planet’s cloud tops — as close as about 2,200 miles (3,500 kilometers). During these flybys, Juno is probing beneath the obscuring cloud cover of Jupiter and studying its auroras to learn more about the planet’s origins, structure, weather layer and magnetosphere.

NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. The Italian Space Agency (ASI), contributed two instruments, a Ka-band frequency translator (KaT) and the Jovian Infrared Auroral Mapper (JIRAM). Lockheed Martin Space, Denver, built the spacecraft.

The public can follow the mission on Facebook and Twitter at:

More information on Jupiter can be found at: https://www.nasa.gov/jupiter

===

Another beautiful view of Jupiter created by a citizen scientist:

Jovian ‘Twilight Zone’

This image captures the swirling cloud formations around the south pole of Jupiter, looking up toward the equatorial region.

NASA’s Juno spacecraft took the color-enhanced image during its eleventh close flyby of the gas giant planet on Feb. 7 at 7:11 a.m. PST (10:11 a.m. EST). At the time, the spacecraft was 74,896 miles (120,533 kilometers) from the tops of Jupiter’s clouds at 84.9 degrees south latitude.

Citizen scientist Gerald Eichstädt processed this image using data from the JunoCam imagerThis image was created by reprocessing raw JunoCam data using trajectory and pointing data from the spacecraft. This image is one in a series of images taken in an experiment to capture the best results for illuminated parts of Jupiter’s polar region.

To make features more visible in Jupiter’s terminator — the region where day meets night — the Juno team adjusted JunoCam so that it would perform like a portrait photographer taking multiple photos at different exposures, hoping to capture one image with the intended light balance. For JunoCam to collect enough light to reveal features in Jupiter’s dark twilight zone, the much brighter illuminated day-side of Jupiter becomes overexposed with the higher exposure.

JunoCam’s raw images are available for the public to peruse and process into image products at:

www.missionjuno.swri.edu/junocam

More information about Juno is at:

https://www.nasa.gov/juno and http://missionjuno.swri.edu

Image credits: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt

====

Carnival of Space #551 – NextBigFuture.com

NextBigFuture.com hosts the latest Carnival of Space.

ULX in M51, the Whirlpool Galaxy.

 

ESO: Combo of telescopes sees deep and vividly into the Orion Nebula

A new report from ESO (European Southern Observatory):

ALMA Reveals Inner Web of Stellar Nursery

This spectacular and unusual image shows part of the famous Orion Nebula, a star formation region lying about 1350 light-years from Earth. It combines a mosaic of millimetre wavelength images from the Atacama Large Millimeter/submillimeter Array (ALMA) and the IRAM 30-metre telescope, shown in red, with a more familiar infrared view from the HAWK-I instrument on ESO’s Very Large Telescope, shown in blue. The group of bright blue-white stars at the left is the Trapezium Cluster — made up of hot young stars that are only a few million years old. [Larger image.]

New data from the Atacama Large Millimeter/submillimeter Array (ALMA) and other telescopes have been used to create this stunning image showing a web of filaments in the Orion Nebula. These features appear red-hot and fiery in this dramatic picture, but in reality are so cold that astronomers must use telescopes like ALMA to observe them.

https://youtu.be/aNNddtRRflk

This spectacular and unusual image shows part of the famous Orion Nebula, a star formation region lying about 1350 light-years from Earth. It combines a mosaic of millimetre-wavelength images from the Atacama Large Millimeter/submillimeter Array (ALMA) and the IRAM 30-metre telescope, shown in red, with a more familiar infrared view from the HAWK-Iinstrument on ESO’s Very Large Telescope, shown in blue. The group of bright blue-white stars at the upper-left is the Trapezium Cluster — made up of hot young stars that are only a few million years old.

The wispy, fibre-like structures seen in this large image are long filaments of cold gas, only visible to telescopes working in the millimetre wavelength range. They are invisible at both optical and infrared wavelengths, making ALMA one of the only instruments available for astronomers to study them. This gas gives rise to newborn stars — it gradually collapses under the force of its own gravity until it is sufficiently compressed to form a protostar — the precursor to a star.

The scientists who gathered the data from which this image was created were studying these filaments to learn more about their structure and make-up. They used ALMA to look for signatures of diazenylium gas, which makes up part of these structures. Through doing this study, the team managed to identify a network of 55 filaments.

The Orion Nebula is the nearest region of massive star formation to Earth, and is therefore studied in great detail by astronomers seeking to better understand how stars form and evolve in their first few million years. ESO’s telescopes have observed this interesting region multiple times, and you can learn more about previous discoveries herehere, and here.

This image combines a total of 296 separate individual datasets from the ALMA and IRAM telescopes, making it one of the largest high-resolution mosaics of a star formation region produced so far at millimetre wavelengths [1].

Notes

[1] Earlier mosaics of Orion at millimetre wavelengths had used single-dish telescopes, such as APEX. The new observations from ALMA and IRAM use interferometry to combine the signals from multiple, widely-separated antennas to create images showing much finer detail.

This chart shows the location of the Orion Nebula (Messier 42) in the sword of the famous constellation of Orion (the Hunter). This map shows most of the stars visible to the unaided eye under good conditions and the Orion Nebula itself is highlighted with a red circle on the image. This grand star formation region can be seen with the unaided eye and is an impressive sight in moderate-sized amateur telescopes.

Videos: TMRO Orbit 11.09 – Introducing LAUNCHER

The latest episode of TMRO.tv is now available on line: Introducing LAUNCHER – Orbit 11.09 – TMRO 

Max Haot of LAUNCHER joins us to talk about their new rocket company LAUNCHER. We talk about their current tests, 3D printing rocket engines and plans for the future.

News topics and launches covered:

News:
Dark matter in the cosmic dawn 
ISS Crew Return to Earth
Proxima centauri had a bad day

Launches:
H-2A Rocket launches Japanese Reconnaissance Satellite 
Atlas V Launches GOES-S Weather Satellite

A couple of short video SpacePod reports:

TMRO is viewer supported:

TMRO shows are crowd funded. If you like this episode consider contributing to help us to continue to improve. Head over to http://www.patreon.com/tmro for per-episode contribution or http://www.makersupport.com/tmro for monthly contributions and reward information.

====

The first Las Cruces Space Festival – April 12-14, 2018

The Las Cruces Space Festival in Las Cruces, New Mexico, near Spaceport America, will celebrate “Space for Everyone” : 

The first Las Cruces Space Festival (LCSF) will be held from April 12 – 14, 2018 to celebrate space-related activity and interest in the Las Cruces region. Locals as well as visitors are invited to join this inaugural celebration of all things space! We’re making space for everyone!

Space activity is an area of huge interest for many people, part of our culture and of our heritage. We all benefit from previous space innovations, including cell phones, GPS and weather tracking, just to name a few!

There is already much space-related activity in the area, and it’s also set to increase over the coming years, offering new prospects to our youth and drawing in experienced experts in the field to this area to help achieve our space goals.

More details about the Festival and events will continue to be updated on this site as they become available. Check back often for new events and details! We can’t wait for LCSF 2018 – it’s going to be out of this world!

More at Organizers release details of three-day Las Cruces Space Festival :

On Thursday, April 12, events will be geared toward children and families in a celebration of the anniversary of human space flight. Yuri’s Night, celebrated worldwide, marks the 1961 date when the Soviet Union launched Yuri Gagarin into orbit around the Earth. 

Events will take place on the New Mexico State University campus and will include a mobile planetarium and a tech center featuring a space flight simulation. There will also be educational NMSU Space Talks and stargazing. Las Cruces Public Schools is also planning events earlier in the week.

On Friday, April 13, a Space Showcase at Mesilla Valley Mall will offer an opportunity for budding astronauts, curious minds and science buffs to interact with and ask questions from experts in space travel, aerospace and space exploration.

Virgin Galactic is bringing a full-scale replica of a SpaceShipTwo suborbital rocketship.

And there will be tours of the spaceport:

Festival organizers are also aiming to set up a space tour from Las Cruces to Spaceport America. KTAL 101.5 Community Radio in Las Cruces will broadcast special features and interviews throughout the week of the festival.

====