Category Archives: Space Science

ESO: Disk detected around a star in another galaxy for the first time

A report from the European Southern Observatory (ESO):

Astronomers discover disc around star in another galaxy for the first time

This artist’s impression shows the HH 1177 system, which is located in the Large Magellanic Cloud, a neighbouring galaxy of our own. The young and massive stellar object glowing in the centre is collecting matter from a dusty disc while also expelling matter in powerful jets. Using the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner, a team of astronomers managed to find evidence for the presence of this disc by observing its rotation. This is the first time a disc around a young star — the type of disc identical to those forming planets in our own galaxy — has been discovered in another galaxy.

In a remarkable discovery, astronomers have found a disc around a young star in the Large Magellanic Cloud, a galaxy neighbouring ours. It’s the first time such a disc, identical to those forming planets in our own Milky Way, has ever been found outside our galaxy. The new observations reveal a massive young star, growing and accreting matter from its surroundings and forming a rotating disc. The detection was made using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, in which the European Southern Observatory (ESO) is a partner.

“When I first saw evidence for a rotating structure in the ALMA data I could not believe that we had detected the first extragalactic accretion disc, it was a special moment,”

says Anna McLeod, an associate professor at Durham University in the UK and lead author of the study published today in Nature.

“We know discs are vital to forming stars and planets in our galaxy, and here, for the first time, we’re seeing direct evidence for this in another galaxy.”

This study follows up observations with the Multi Unit Spectroscopic Explorer (MUSE) instrument on ESO’s Very Large Telescope (VLT), which spotted a jet from a forming star — the system was named HH 1177 — deep inside a gas cloud in the Large Magellanic Cloud.

“We discovered a jet being launched from this young massive star, and its presence is a signpost for ongoing disc accretion,”

McLeod says. But to confirm that such a disc was indeed present, the team needed to measure the movement of the dense gas around the star.

With the combined capabilities of ESO’s Very Large Telescope (VLT) and the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner, a disc around a young massive star in another galaxy has been observed. Observations from the Multi Unit Spectroscopic Explorer (MUSE) on the VLT, left, show the parent cloud LHA 120-N 180B in which this system, dubbed HH 1177, was first observed. The image at the centre shows the jets that accompany it. The top part of the jet is aimed slightly towards us and thus blueshifted; the bottom one is receding from us and thus redshifted. Observations from ALMA, right, then revealed the rotating disc around the star, similarly with sides moving towards and away from us.

As matter is pulled towards a growing star, it cannot fall directly onto it; instead, it flattens into a spinning disc around the star. Closer to the centre, the disc rotates faster, and this difference in speed is the smoking gun that shows astronomers an accretion disc is present.

“The frequency of light changes depending on how fast the gas emitting the light is moving towards or away from us,”

explains Jonathan Henshaw, a research fellow at Liverpool John Moores University in the UK, and co-author of the study.

“This is precisely the same phenomenon that occurs when the pitch of an ambulance siren changes as it passes you and the frequency of the sound goes from higher to lower.”

The detailed frequency measurements from ALMA allowed the authors to distinguish the characteristic spin of a disc, confirming the detection of the first disc around an extragalactic young star.

Massive stars, like the one observed here, form much more quickly and live far shorter lives than low-mass stars like our Sun. In our galaxy, these massive stars are notoriously challenging to observe and are often obscured from view by the dusty material from which they form at the time a disc is shaping around them. However, in the Large Magellanic Cloud, a galaxy 160 000 light-years away, the material from which new stars are being born is fundamentally different from that in the Milky Way. Thanks to the lower dust content, HH 1177 is no longer cloaked in its natal cocoon, offering astronomers an unobstructed, if far away, view of star and planet formation.

“We are in an era of rapid technological advancement when it comes to astronomical facilities,” McLeod says. “Being able to study how stars form at such incredible distances and in a different galaxy is very exciting.”

Links

=== Amazon Ads ===

Celestron – NexStar 130SLT Computerized Telescope –
Compact and Portable –
Newtonian Reflector Optical Design –
SkyAlign Technology –
Computerized Hand Control –
130mm Aperture

====

For the Love of Mars:
A Human History of the Red Planet

ESO: Observation of the most distant fast radio burst (FRB) to date

A new report from the European Southern Observatory (ESO):

Astronomers detect most distant fast radio burst to date

An international team has spotted a remote blast of cosmic radio waves lasting less than a millisecond. This ‘fast radio burst’ (FRB) is the most distant ever detected. Its source was pinned down by the European Southern Observatory’s (ESO) Very Large Telescope (VLT) in a galaxy so far away that its light took eight billion years to reach us. The FRB is also one of the most energetic ever observed; in a tiny fraction of a second it released the equivalent of our Sun’s total emission over 30 years.

The discovery of the burst, named FRB 20220610A, was made in June last year by the ASKAP radio telescope in Australia [1] and it smashed the team’s previous distance record by 50 percent.

“Using ASKAP’s array of dishes, we were able to determine precisely where the burst came from,”

says Stuart Ryder, an astronomer from Macquarie University in Australia and the co-lead author of the study published today in Science.

“Then we used [ESO’s VLT] in Chile to search for the source galaxy, [2] finding it to be older and further away than any other FRB source found to date and likely within a small group of merging galaxies.”

The discovery confirms that FRBs can be used to measure the ‘missing’ matter between galaxies, providing a new way to ‘weigh’ the Universe.

Current methods of estimating the mass of the Universe are giving conflicting answers and challenging the standard model of cosmology.

“If we count up the amount of normal matter in the Universe — the atoms that we are all made of — we find that more than half of what should be there today is missing,”

says Ryan Shannon, a professor at the Swinburne University of Technology in Australia, who also co-led the study.

“We think that the missing matter is hiding in the space between galaxies, but it may just be so hot and diffuse that it’s impossible to see using normal techniques.”

“Fast radio bursts sense this ionised material. Even in space that is nearly perfectly empty they can ‘see’ all the electrons, and that allows us to measure how much stuff is between the galaxies,”

Shannon says.

Finding distant FRBs is key to accurately measuring the Universe’s missing matter, as shown by the late Australian astronomer Jean-Pierre (‘J-P’) Macquart in 2020. “J-P showed that the further away a fast radio burst is, the more diffuse gas it reveals between the galaxies. This is now known as the Macquart relation. Some recent fast radio bursts appeared to break this relationship. Our measurements confirm the Macquart relation holds out to beyond half the known Universe,” says Ryder.

“While we still don’t know what causes these massive bursts of energy, the paper confirms that fast radio bursts are common events in the cosmos and that we will be able to use them to detect matter between galaxies, and better understand the structure of the Universe,”

says Shannon.

The result represents the limit of what is achievable with telescopes today, although astronomers will soon have the tools to detect even older and more distant bursts, pin down their source galaxies and measure the Universe’s missing matter. The international Square Kilometre Array Observatory is currently building two radio telescopes in South Africa and Australia that will be capable of finding thousands of FRBs, including very distant ones that cannot be detected with current facilities. ESO’s Extremely Large Telescope, a 39-metre telescope under construction in the Chilean Atacama Desert, will be one of the few telescopes able to study the source galaxies of bursts even further away than FRB 20220610A.

Notes

[1] The ASKAP telescope is owned and operated by CSIRO, Australia’s national science agency, on Wajarri Yamaji Country in Western Australia.

[2] The team used data obtained with the FOcal Reducer and low dispersion Spectrograph 2 (FORS2), the X-shooter and the High Acuity Wide-field K-band Imager (HAWK-I) instruments on ESO’s VLT. Data from the Keck Observatory in Hawai’i, US, was also used in the study.

Links

=== Amazon Ads ===

Fundamentals of Space Missions:
Problems with Solutions

====

For the Love of Mars:
A Human History of the Red Planet

ESO: Most distant galactic magnetic field detected

A new report from the European Southern Observatory (ESO). Note that the galaxy of interest was initially discovered by a citizen science project sponsored by the BBC’s Stargazing Live television program [1].

Furthest ever detection of a galaxy’s magnetic field

This image shows the orientation of the magnetic field in the distant 9io9 galaxy, seen here when the Universe was only 20% of its current age — the furthest ever detection of a galaxy’s magnetic field. The observations were done with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Dust grains within 9io9 are somewhat aligned with the galaxy’s magnetic field, and due to this they emit polarised light, meaning that light waves oscillate along a preferred direction rather than randomly. ALMA detected this polarisation signal, from which astronomers could work out the orientation of the magnetic field, shown here as curved lines overlaid on the ALMA image. The polarised light signal emitted by the magnetically aligned dust in 9io9 was extremely faint, representing just one percent of the total brightness of the galaxy, so astronomers used a clever trick of nature to help them obtain this result. The team was helped by the fact that 9io9, although very distant from us, had been magnified via a process known as gravitational lensing. This occurs when light from a distant galaxy, in this case 9io9, appears brighter and distorted as it is bent by the gravity of a very large object in the foreground.

Using the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have detected the magnetic field of a galaxy so far away that its light has taken more than 11 billion years to reach us: we see it as it was when the Universe was just 2.5 billion years old. The result provides astronomers with vital clues about how the magnetic fields of galaxies like our own Milky Way came to be.

Lots of astronomical bodies in the Universe have magnetic fields, whether it be planets, stars or galaxies.

Many people might not be aware that our entire galaxy and other galaxies are laced with magnetic fields, spanning tens of thousands of light-years,”

says James Geach, a professor of astrophysics at the University of Hertfordshire, UK, and lead author of the study published today in Nature.

We actually know very little about how these fields form, despite their being quite fundamental to how galaxies evolve,”

adds Enrique Lopez Rodriguez, a researcher at Stanford University, USA, who also participated in the study. It is not clear how early in the lifetime of the Universe, and how quickly, magnetic fields in galaxies form because so far astronomers have only mapped magnetic fields in galaxies close to us.

Now, using ALMA, in which the European Southern Observatory (ESO) is a partner, Geach and his team have discovered a fully formed magnetic field in a distant galaxy, similar in structure to what is observed in nearby galaxies. The field is about 1000 times weaker than the Earth’s magnetic field, but extends over more than 16 000 light-years.

This discovery gives us new clues as to how galactic-scale magnetic fields are formed,

explains Geach. Observing a fully developed magnetic field this early in the history of the Universe indicates that magnetic fields spanning entire galaxies can form rapidly while young galaxies are still growing.

The team believes that intense star formation in the early Universe could have played a role in accelerating the development of the fields. Moreover, these fields can in turn influence how later generations of stars will form. Co-author and ESO astronomer Rob Ivison says that the discovery opens up

“a new window onto the inner workings of galaxies, because the magnetic fields are linked to the material that is forming new stars.”

To make this detection, the team searched for light emitted by dust grains in a distant galaxy, 9io9 [1]. Galaxies are packed full of dust grains and when a magnetic field is present, the grains tend to align and the light they emit becomes polarised. This means that the light waves oscillate along a preferred direction rather than randomly. When ALMA detected and mapped a polarised signal coming from 9io9, the presence of a magnetic field in a very distant galaxy was confirmed for the first time.

No other telescope could have achieved this,”

says Geach. The hope is that with this and future observations of distant magnetic fields the mystery of how these fundamental galactic features form will begin to unravel.

Notes

[1] 9io9 was discovered in the course of a citizen science project. The discovery was helped by viewers of the British BBC television programme Stargazing Live, when over three nights in 2014 the audience was asked to examine millions of images in the hunt for distant galaxies.

Links

=== Amazon Ads ===

Nooelec GOES Weather Satellite RTL-SDR Bundle
Includes NESDR SMArTee XTR Software Defined Radio, &
Everything Else Needed to Receive
LRIT, HRIT & HRPT Satellite Weather Images
Directly from Space!

===

Imagined Life: A Speculative Scientific Journey among the Exoplanets
in Search of Intelligent Aliens, Ice Creatures, and Supergravity Animals

ESO: Explaining the ups and downs in a pulsar’s brightness

A new report from the European Southern Observatory (ESO):

ESO telescopes help unravel pulsar puzzle

This artist’s impression shows the pulsar PSR J1023+0038 stealing gas from its companion star. This gas accumulates in a disc around the pulsar, slowly falls towards it, and is eventually expelled in a narrow jet. In addition, there is a wind of particles blowing away from the pulsar, represented here by a cloud of very small dots. This wind clashes with the infalling gas, heating it up and making the system glow brightly in X-rays and ultraviolet and visible light. Eventually, blobs of this hot gas are expelled along the jet, and the pulsar returns to the initial, fainter state, repeating the cycle. This pulsar has been observed to switch incessantly between these two states every few seconds or minutes.

With a remarkable observational campaign that involved 12 telescopes both on the ground and in space, including three European Southern Observatory (ESO) facilities, astronomers have uncovered the strange behaviour of a pulsar, a super-fast-spinning dead star. This mysterious object is known to switch between two brightness modes almost constantly, something that until now has been an enigma. But astronomers have now found that sudden ejections of matter from the pulsar over very short periods are responsible for the peculiar switches.

“We have witnessed extraordinary cosmic events where enormous amounts of matter, similar to cosmic cannonballs, are launched into space within a very brief time span of tens of seconds from a small, dense celestial object rotating at incredibly high speeds,”

says Maria Cristina Baglio, researcher at New York University Abu Dhabi, affiliated with the Italian National Institute for Astrophysics (INAF), and the lead author of the paper published today in Astronomy & Astrophysics.

A pulsar is a fast-rotating, magnetic, dead star that emits a beam of electromagnetic radiation into space. As it rotates, this beam sweeps across the cosmos — much like a lighthouse beam scanning its surroundings — and is detected by astronomers as it intersects the line of sight to Earth. This makes the star appear to pulse in brightness as seen from our planet.

PSR J1023+0038, or J1023 for short, is a special type of pulsar with a bizarre behaviour. Located about 4500 light-years away in the Sextans constellation, it closely orbits another star. Over the past decade, the pulsar has been actively pulling matter off this companion, which accumulates in a disc around the pulsar and slowly falls towards it.

Since this process of accumulating matter began, the sweeping beam virtually vanished and the pulsar started incessantly switching between two modes. In the ‘high’ mode, the pulsar gives off bright X-rays, ultraviolet and visible light, while in the ‘low’ mode it’s dimmer at these frequencies and emits more radio waves. The pulsar can stay in each mode for several seconds or minutes, and then switch to the other mode in just a few seconds. This switching has thus far puzzled astronomers.

“Our unprecedented observing campaign to understand this pulsar’s behaviour involved a dozen cutting-edge ground-based and space-borne telescopes,”

says Francesco Coti Zelati, a researcher at the Institute of Space Sciences, Barcelona, Spain, and co-lead author of the paper. The campaign included ESO’s Very Large Telescope (VLT) and ESO’s New Technology Telescope (NTT), which detected visible and near-infrared light, as well as the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Over two nights in June 2021, they observed the system make over 280 switches between its high and low modes.

“We have discovered that the mode switching stems from an intricate interplay between the pulsar wind, a flow of high-energy particles blowing away from the pulsar, and matter flowing towards the pulsar,”

says Coti Zelati, who is also affiliated with INAF.

In the low mode, matter flowing towards the pulsar is expelled in a narrow jet perpendicular to the disc. Gradually, this matter accumulates closer and closer to the pulsar and, as this happens, it is hit by the wind blowing from the pulsating star, causing the matter to heat up. The system is now in a high mode, glowing brightly in the X-ray, ultraviolet and visible light. Eventually, blobs of this hot matter are removed by the pulsar via the jet. With less hot matter in the disc, the system glows less brightly, switching back into the low mode.

While this discovery has unlocked the mystery of J1023’s strange behaviour, astronomers still have much to learn from studying this unique system and ESO’s telescopes will continue to help astronomers observe this peculiar pulsar. In particular, ESO’s Extremely Large Telescope (ELT), currently under construction in Chile, will offer an unprecedented view of J1023’s switching mechanisms.

“The ELT will allow us to gain key insights into how the abundance, distribution, dynamics, and energetics of the inflowing matter around the pulsar are affected by the mode switching behavior,”

concludes Sergio Campana, Research Director at the INAF Brera Observatory and coauthor of the study.

Links

=== Amazon Ads ===

Celestron – NexStar 130SLT Computerized Telescope –
Compact and Portable –
Newtonian Reflector Optical Design –
SkyAlign Technology –
Computerized Hand Control –
130mm Aperture

===

An Infinity of Worlds:
Cosmic Inflation and the Beginning of the Universe

ESO: Dark spot on Neptune observed by telescope on Earth for first time

A new report from the European Southern Observatory (ESO):

Mysterious Neptune dark spot detected from Earth for the first time

This image shows Neptune observed with the MUSE instrument at ESO’s Very Large Telescope (VLT). At each pixel within Neptune, MUSE splits the incoming light into its constituent colours or wavelengths. This is similar to obtaining images at thousands of different wavelengths all at once, which provides a wealth of valuable information to astronomers. The image to the right combines all colours captured by MUSE into a “natural” view of Neptune, where a dark spot can be seen to the upper-right. Then we see images at specific wavelengths: 551 nanometres (blue), 831 nm (green), and 848 nm (red); note that the colours are only indicative, for display purposes. The dark spot is most prominent at shorter (bluer) wavelengths. Right next to this dark spot MUSE also captured a small bright one, seen here only in the middle image at 831 nm and located deep in the atmosphere. This type of deep bright cloud had never been identified before on the planet. The images also show several other shallower bright spots towards the bottom-left edge of Neptune, seen at long wavelengths. Imaging Neptune’s dark spot from the ground was only possible thanks to the VLT’s Adaptive Optics Facility, which corrects the blur caused by atmospheric turbulence and allows MUSE to obtain crystal clear images. To better highlight the subtle dark and bright features on the planet, the astronomers carefully processed the MUSE data, obtaining what you see here.

Using ESO’s Very Large Telescope (VLT), astronomers have observed a large dark spot in Neptune’s atmosphere, with an unexpected smaller bright spot adjacent to it. This is the first time a dark spot on the planet has ever been observed with a telescope on Earth. These occasional features in the blue background of Neptune’s atmosphere are a mystery to astronomers, and the new results provide further clues as to their nature and origin.

Large spots are common features in the atmospheres of giant planets, the most famous being Jupiter’s Great Red Spot. On Neptune, a dark spot was first discovered by NASA’s Voyager 2 in 1989, before disappearing a few years later.

Since the first discovery of a dark spot, I’ve always wondered what these short-lived and elusive dark features are,”

says Patrick Irwin, Professor at the University of Oxford in the UK and lead investigator of the study published today in Nature Astronomy.

Irwin and his team used data from ESO’s VLT to rule out the possibility that dark spots are caused by a ‘clearing’ in the clouds. The new observations indicate instead that dark spots are likely the result of air particles darkening in a layer below the main visible haze layer, as ices and hazes mix in Neptune’s atmosphere.

Coming to this conclusion was no easy feat because dark spots are not permanent features of Neptune’s atmosphere and astronomers had never before been able to study them in sufficient detail. The opportunity came after the NASA/ESA Hubble Space Telescope discovered several dark spots in Neptune’s atmosphere, including one in the planet’s northern hemisphere first noticed in 2018. Irwin and his team immediately got to work studying it from the ground — with an instrument that is ideally suited to these challenging observations.

Using the VLT’s Multi Unit Spectroscopic Explorer (MUSE), the researchers were able to split reflected sunlight from Neptune and its spot into its component colours, or wavelengths, and obtain a 3D spectrum [1]. This meant they could study the spot in more detail than was possible before.

I’m absolutely thrilled to have been able to not only make the first detection of a dark spot from the ground, but also record for the very first time a reflection spectrum of such a feature,

says Irwin.

This image shows Neptune observed with the MUSE instrument at ESO’s Very Large Telescope. At each pixel within Neptune, MUSE splits the incoming light into its constituent colours or wavelengths. This is similar to obtaining images at thousands of different wavelengths all at once, which provides a wealth of valuable information to astronomers. This image combines all colours captured by MUSE into a “natural” view of Neptune, where a dark spot can be seen to the upper-right.

Since different wavelengths probe different depths in Neptune’s atmosphere, having a spectrum enabled astronomers to better determine the height at which the dark spot sits in the planet’s atmosphere. The spectrum also provided information on the chemical composition of the different layers of the atmosphere, which gave the team clues as to why the spot appeared dark.

The observations also offered up a surprise result.

In the process we discovered a rare deep bright cloud type that had never been identified before, even from space,”

says study co-author Michael Wong, a researcher at the University of California, Berkeley, USA. This rare cloud type appeared as a bright spot right beside the larger main dark spot, the VLT data showing that the new ‘deep bright cloud’ was at the same level in the atmosphere as the main dark spot. This means it is a completely new type of feature compared to the small ‘companion’ clouds of high-altitude methane ice that have been previously observed.

With the help of ESO’s VLT, it is now possible for astronomers to study features like these spots from Earth. “This is an astounding increase in humanity’s ability to observe the cosmos.

At first, we could only detect these spots by sending a spacecraft there, like Voyager. Then we gained the ability to make them out remotely with Hubble. Finally, technology has advanced to enable this from the ground,

concludes Wong, before adding, jokingly:

This could put me out of work as a Hubble observer!

Notes

[1] MUSE is a 3D spectrograph that allows astronomers to observe the entirety of an astronomical object, like Neptune, in one go. At each pixel, the instrument measures the intensity of light as a function of its colour or wavelength. The resulting data form a 3D set in which each pixel of the image has a full spectrum of light. In total, MUSE measures over 3500 colours. The instrument is designed to take advantage of adaptive optics, which corrects for the turbulence in the Earth’s atmosphere, resulting in sharper images than otherwise possible. Without this combination of features, studying a Neptune dark spot from the ground would not have been possible.

=== Amazon Ads ===

Celestron – NexStar 130SLT Computerized Telescope –
Compact and Portable –
Newtonian Reflector Optical Design –
SkyAlign Technology –
Computerized Hand Control –
130mm Aperture

===

An Infinity of Worlds:
Cosmic Inflation and the Beginning of the Universe