Videos: TMRO Orbit 11.13 – “What is currently holding humanity back from our next cosmic steps?”

Here is the latest program: What is currently holding humanity back from our next cosmic steps? – Orbit 11.13 – TMRO

This week we have a round table discussion asking the question, “What is currently holding humanity back from our next cosmic steps?” And we’re really curious what you think as well! Leave your ideas and comments below.

News topics and launches covered:

GSLV Launches GSAT 6A 
Long March 3B Launches Beidou Navigation satellites
Soyuz 2-1v Launches EMKA
Falcon 9 Launches 5th IridiumNEXT batch
Long March 4C Launches Gaofen

‘Oumuamua Likely Came From A Binary Star System
Blue Origin Switches Engines
TRAPPIST-1’s Planets Are Wet, Probably Too Wet For Life

TMRO shows are crowd funded. If you like this episode consider contributing to help us to continue to improve. Head over to for per-episode contribution or for monthly contributions and reward information.

A SpacePod short report:


Videos: Planetary Post – “LightSail in the Clean Room”

The latest Planetary Post program from the Planetary Society:

Special guest host, Seth MacFarlane, is overshadowed by another special guest host, Dr. Bruce Betts, in this episode featuring the LightSail 2 Integration. Also featuring yet another special guest Dr. at the end! But Who is it?

This video animation demonstrates the LightSail 2 assembly and operation in space:

The Society’s PlanetVac project was mentioned here recently. Here is a video showing 3D printing of the PlanetVac body:


Cosmic lens allows Hubble to discover the most distant star ever seen

A new finding with the Hubble Telescope:

Hubble uses cosmic lens to discover most distant star ever observed

This image composite shows the discovery of the most distant known star using the NASA/ESA Hubble Space Telescope. The image to the left shows a part of the the deep-field observation of the galaxy cluster MACS J1149.5+2223 from the Frontier Fields programme gathered in 2014. The square indicates the position where the star appeared in May 2016 — its image magnified by gravitational microlensing. This part of the image also shows the four images of the Refsdal supernova, arranged in an Einstein cross. The upper right image pinpoints the position of the star, observed in 2011. The lower right image shows where the star was undergoing the microlensing event in late May 2016. [Larger image]
Astronomers using the NASA/ESA Hubble Space Telescope have found the most distant star ever discovered. The hot blue star existed only 4.4 billion years after the Big Bang. This discovery provides new insight into the formation and evolution of stars in the early Universe, the constituents of galaxy clusters and also on the nature of dark matter.

The international team, led by Patrick Kelly (University of Minnesota, USA), Jose Diego (Instituto de Física de Cantabria, Spain) and Steven Rodney (University of South Carolina, USA), discovered the distant star in the galaxy cluster MACS J1149-2223 in April 2016.

This animation shows the effect of strong gravitational lensing, which can also be seen in the galaxy MACS J1149-2223. The mass of the galaxy cluster bends and magnifies the light of more distant objects in the background, making them appear brighter and hence allows telescopes to see them; it also leads to multiple images of the same object. This way Hubble detected the most distant star know to date, called LS1.

The observations with Hubble were actually performed in order to detect and follow the latest appearance of the gravitationally lensed supernova explosion nicknamed “Refsdal” (heic1525)[1], when an unexpected point source brightened in the same galaxy that hosted the supernova.

“Like the Refsdal supernova explosion the light of this distant star got magnified, making it visible for Hubble,” says Patrick Kelly. “This star is at least 100 times farther away than the next individual star we can study, except for supernova explosions.”

The observed light from the newly discovered star, called Lensed Star 1 (LS1) was emitted when the Universe was only about 30 percent of its current age — about 4.4 billion years after the Big Bang. The detection of the star through Hubble was only possible because the light from the star was magnified 2000 times.

“The star became bright enough to be visible for Hubble thanks to a process called gravitational lensing,” 

explains Jose Diego. The light from LS1 was magnified not only by the huge total mass of the galaxy cluster, but also by another compact object of about three times the mass of the Sun within the galaxy cluster itself; an effect known as gravitational microlensing [2].

“The discovery of LS1 allows us to gather new insights into the constituents of the galaxy cluster. We know that the microlensing was caused by either a star, a neutron star, or a stellar-mass black hole,” 

explains Steven Rodney. LS1 therefore allows astronomers to study neutron stars and black holes, which are otherwise invisible and they can estimate how many of these dark objects exist within this galaxy cluster.

This image shows the the huge galaxy cluster MACS J1149.5+223, whose light has taken over 5 billion years to reach us. Highlighted is the position where the star LS1 appeared — its image magnified by a factor 2000 by gravitational microlensing. The galaxy in which the star is located can be seen three times on the sky — multiplied by strong gravitational lensing. [ Larger image]
As galaxy clusters are among the largest and most massive structures in the Universe, learning about their constituents also increases our knowledge about the composition of the Universe overall. This includes additional information about the mysterious dark matter.

“If dark matter is at least partially made up of comparatively low-mass black holes, as it was recently proposed, we should be able to see this in the light curve of LS1. Our observations do not favour the possibility that a high fraction of dark matter is made of these primordial black holes with about 30 times the mass of the Sun”,

highlights Kelly.

This video shows the galaxy cluster MACS J1149.5+223. Thanks to a lucky alignment between the cluster, a dense object within it and a distant star, the image of the distant star was magnified by a factor of 2000, making it visible by the NASA/ESA Hubble Space Telescope. Like the galaxy in which the star is located, the star is actually visible several times. However, the light from the second image of the star was redirected by another massive object in the cluster and only became visible when this object moved out of the line of sight. The video shows the position of the two images of the star within the cluster.

After the discovery the researchers used Hubble again to measure a spectrum of LS1. Based on their analysis, the astronomers think that LS1 is a B-type supergiant star. These stars are extremely luminous and blue in colour, with a surface temperature between 11 000 and 14 000 degrees Celsius; making them more than twice as hot as the Sun.

But this was not the end of the story. Observations made in October 2016 suddenly showed a second image of the star.

“We were actually surprised to not have seen this second image in earlier observations, as also the galaxy the star is located in can be seen twice,” comments Diego. “We assume that the light from the second image has been deflected by another moving massive object for a long time — basically hiding the image from us. And only when the massive object moved out of the line of sight the second image of the star became visible.” 

This second image and the blocking object add another piece of the puzzle to reveal the makeup of galaxy clusters.

With more research and the arrival of new, more powerful telescopes like the NASA/ESA/CSA James Webb Space Telescope, the astronomers suggest that with microlensing, it will be possible to study the evolution of the earliest stars in the Universe in greater detail than ever expected.

This image shows the huge galaxy cluster MACS J1149.5+223, whose light took over 5 billion years to reach us. The huge mass of the cluster is bending the light from more distant objects. The light from these objects has been magnified and distorted due to gravitational lensing. The same effect is creating multiple images of the same distant objects. [ Larger image]

[1] Observations of this supernova, nicknamed Refsdal in honour of the Norwegian astronomer Sjur Refsdal, were made as part of Hubble’s Frontier Fields project.

[2] Gravitational lensing magnifies the light from fainter, background objects, allowing Hubble to see objects it would otherwise not be able to detect. The process was first predicted by Albert Einstein and is now used to find some of the most distant objects in the Universe. Usually the lensing object is a galaxy or a galaxy cluster, but in some cases it can also be a star or even a planet. When it involves these smaller objects the process is called microlensing.

This short clip shows an animation of the B-type supergiant star LS1 which was discovered with the help of gravitational lensing. These stars are extremely luminous and blue in colour, with a surface temperature between 11 000 and 14 000 degrees Celsius; making them more than twice as hot as the Sun. Credit:  ESA/Hubble, M. Kornmesser

The Space Show this week – Apri.2.2018

The guests and topics of discussion on The Space Show this week:

1. Monday, April 2, 2018; 2-3:30 pm PDT (4-5:30 pm CDT, 5-6:30 pm EDT): We welcome Dr. Joshua Bandfield regarding his newly published paper “Widespread distribution of OH/H2O on the lunar surface inferred from spectral data“. This paper [pdf] is available on TSS blog page for this show.

2. Tuesday, April 3, 2018: 7-8:30 pm PDT; 9-10:30 pm CDT; 10-11:30 pm EDT: We welcome Dr. Adam Dodd of Queensland University to discuss his Astropolitics Journal article “Strategic Ignorance and the Search for Extraterrestrial Intelligence“. You can download this paper off his Queensland University website, .

3. Wednesday, April 3, 2018: Hotel Mars. See Upcoming Show Menu and the website newsletter for details. Hotel Mars is pre-recorded by John Batchelor. It is archived on The Space Show site after John posts it on his website.

4. Friday, April 6, 2018; 9:30 am -11 am PDT, (12:30 -2 pm EDT; 11:30 am – 1 pm CDT): We welcome Ben Pearson to discuss the Space Stack Exchange website and more.

5. Sunday, April 8, 2018: 12-1:30 pm PDT; 2-3:30 pm CDT; 3-4:30 pm EDT. We welcome back Dr. Jason Reimuller for updates with Project PoSSUM.

See also:
* The Space Show on Vimeo – webinar videos
* The Space Show’s Blog – summaries of interviews.
* The Space Show Classroom Blog – tutorial programs

The Space Show is a project of the One Giant Leap Foundation.

The Space Show - David Livingston
David Livingston