Category Archives: Space Science

Video: Launch of the HOPE Mars Mission [Updated]

7:58  pm EDT: The upper stage firing went as planned and the probe was successfully deployed. Communications with the vehicle have been established and the solar panels were deployed. The spacecraft’s next job is to use its attitude thrusters to orient itself so as to maximize power generation from the sun. The probe will reach Mars next February.  After going into orbit, the spacecraft’s instruments will study the atmosphere and weather on the Red Planet.

6:31  pm EDT: The launch has succeeded so far in reaching low earth orbit. The upper stage with the probe is now in a coast period before the stage will fire its engine for 4 minutes to send the Hope probe on its route to Mars. The stage will then separate from the probe soon after the engine boost ends. The firing should start at around 6:54 pm EDT (22:54 UTC).

The countdown is nearing liftoff for the  launch of the UAE Hope orbiter mission to Mars on a Japanese H-IIA rocket from the Tenaghashima Space Centre in Japan. Below is the webcast.

5:35 pm EDT: Currently all systems are green for liftoff at 5:38 pm EDT.

Updates and background info:

=== Amazon Ad ===

Xtronaut: The Game of Solar System Exploration

ESO: VLT sees evidence of a planet forming in disc of dust and gas around star AB Aurigae

The latest news from ESO (European Southern Observatory):

ESO Telescope Sees Signs of Planet Birth
The Twist Marks the Spot

This image shows the disc around the young AB Aurigae star, where ESO’s Very Large Telescope (VLT) has spotted signs of planet birth. Close to the centre of the image, in the inner region of the disc, we see the ‘twist’ (in very bright yellow) that scientists believe marks the spot where a planet is forming. This twist lies at about the same distance from the AB Aurigae star as Neptune from the Sun.
The image was obtained with the VLT’s SPHERE instrument in polarised light.

Observations made with the European Southern Observatory’s Very Large Telescope (ESO’s VLT) have revealed the telltale signs of a star system being born. Around the young star AB Aurigae lies a dense disc of dust and gas in which astronomers have spotted a prominent spiral structure with a ‘twist’ that marks the site where a planet may be forming. The observed feature could be the first direct evidence of a baby planet coming into existence.

“Thousands of exoplanets have been identified so far, but little is known about how they form,”

says Anthony Boccaletti who led the study from the Observatoire de Paris, PSL University, France. Astronomers know planets are born in dusty discs surrounding young stars, like AB Aurigae, as cold gas and dust clump together. The new observations with ESO’s VLT, published in Astronomy & Astrophysics, provide crucial clues to help scientists better understand this process.

“We need to observe very young systems to really capture the moment when planets form,”

says Boccaletti. But until now astronomers had been unable to take sufficiently sharp and deep images of these young discs to find the ‘twist’ that marks the spot where a baby planet may be coming to existence.

The new images feature a stunning spiral of dust and gas around AB Aurigae, located 520 light-years away from Earth in the constellation of Auriga (The Charioteer). Spirals of this type signal the presence of baby planets, which ‘kick’ the gas, creating

“disturbances in the disc in the form of a wave, somewhat like the wake of a boat on a lake,”

explains Emmanuel Di Folco of the Astrophysics Laboratory of Bordeaux (LAB), France, who also participated in the study. As the planet rotates around the central star, this wave gets shaped into a spiral arm. The very bright yellow ‘twist’ region close to the centre of the new AB Aurigae image, which lies at about the same distance from the star as Neptune from the Sun, is one of these disturbance sites where the team believe a planet is being made.

The images of the AB Aurigae system showing the disc around it. The image on the right is a zoomed-in version of the area indicated by a red square on the image on the left. It shows the inner region of the disc, including the very-bright-yellow ‘twist’ (circled in white) that scientists believe marks the spot where a planet is forming. This twist lies at about the same distance from the AB Aurigae star as Neptune from the Sun. The blue circle represents the size of the orbit of Neptune. The images were obtained with the SPHERE instrument on ESO’s Very Large Telescope in polarised light.

Observations of the AB Aurigae system made a few years ago with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner, provided the first hints of ongoing planet formation around the star. In the ALMA images, scientists spotted two spiral arms of gas close to the star, lying within the disc’s inner region. Then, in 2019 and early 2020, Boccaletti and a team of astronomers from France, Taiwan, the US and Belgium set out to capture a clearer picture by turning the SPHERE instrument on ESO’s VLT in Chile toward the star. The SPHERE images are the deepest images of the AB Aurigae system obtained to date.

With SPHERE’s powerful imaging system, astronomers could see the fainter light from small dust grains and emissions coming from the inner disc. They confirmed the presence of the spiral arms first detected by ALMA and also spotted another remarkable feature, a ‘twist’, that points to the presence of ongoing planet formation in the disc.

“The twist is expected from some theoretical models of planet formation,”

says co-author Anne Dutrey, also at LAB.

“It corresponds to the connection of two spirals  — one winding inwards of the planet’s orbit, the other expanding outwards — which join at the planet location. They allow gas and dust from the disc to accrete onto the forming planet and make it grow.”

ESO is constructing the 39-metre Extremely Large Telescope, which will draw on the cutting-edge work of ALMA and SPHERE to study extrasolar worlds. As Boccaletti explains, this powerful telescope will allow astronomers to get even more detailed views of planets in the making.

“We should be able to see directly and more precisely how the dynamics of the gas contributes to the formation of planets,”

he concludes.

Links

=== Amazon Ad ===

Fire in the Sky:
Cosmic Collisions, Killer Asteroids, and
the Race to Defend Earth

Space sciences roundup – Jan.29.2020

A sampling of recent articles, videos, and images from space-related science news items (find previous roundups here):

Astronomy

** What Does a Black Hole Look Like: How We Got Our First Picture –  Dr. Eliot Quataert of the University of California, Berkeley gave this recent Silicon Valley Astronomy Lecture:

Black holes are one of the most remarkable predictions of Einstein’s theory of gravity: so much material is compressed into such a small volume that nothing, not even light, can escape. In Spring 2019, the world-wide Event Horizon Telescope released the first real picture of gas around a massive black hole and the “shadow” it makes as the gas swirls into the black hole. Dr. Quataert describes how these pioneering observations were made and what they have taught us about black

** NASA’s Kepler Witnesses Vampire Star System Undergoing Super-Outburst | NASA

NASA’s Kepler spacecraft was designed to find exoplanets by looking for stars that dim as a planet crosses the star’s face. Fortuitously, the same design makes it ideal for spotting other astronomical transients – objects that brighten or dim over time. A new search of Kepler archival data has uncovered an unusual super-outburst from a previously unknown dwarf nova. The system brightened by a factor of 1,600 over less than a day before slowly fading away.

The star system in question consists of a white dwarf star with a brown dwarf companion about one-tenth as massive as the white dwarf. A white dwarf is the leftover core of an aging Sun-like star and contains about a Sun’s worth of material in a globe the size of Earth. A brown dwarf is an object with a mass between 10 and 80 Jupiters that is too small to undergo nuclear fusion.

The brown dwarf circles the white dwarf star every 83 minutes at a distance of only 250,000 miles (400,000 km) – about the distance from Earth to the Moon. They are so close that the white dwarf’s strong gravity strips material from the brown dwarf, sucking its essence away like a vampire. The stripped material forms a disk as it spirals toward the white dwarf (known as an accretion disk).

“This illustration shows a newly discovered dwarf nova system, in which a white dwarf star is pulling material off a brown dwarf companion. The material collects into an accretion disk until reaching a tipping point, causing it to suddenly increase in brightness. Using archival Kepler data, a team observed a previously unseen, and unexplained, gradual intensification followed by a super-outburst in which the system brightened by a factor of 1,600 over less than a day. Credits: NASA and L. Hustak (STScI)

It was sheer chance that Kepler was looking in the right direction when this system underwent a super-outburst, brightening by more than 1,000 times. In fact, Kepler was the only instrument that could have witnessed it, since the system was too close to the Sun from Earth’s point of view at the time. Kepler’s rapid cadence of observations, taking data every 30 minutes, was crucial for catching every detail of the outburst.

The event remained hidden in Kepler’s archive until identified by a team led by Ryan Ridden-Harper of the Space Telescope Science Institute (STScI), Baltimore, Maryland, and the Australian National University, Canberra, Australia. “In a sense, we discovered this system accidentally. We weren’t specifically looking for a super-outburst. We were looking for any sort of transient,” said Ridden-Harper.

Kepler captured the entire event, observing a slow rise in brightness followed by a rapid intensification. While the sudden brightening is predicted by theories, the cause of the slow start remains a mystery. Standard theories of accretion disk physics don’t predict this phenomenon, which has subsequently been observed in two other dwarf nova super-outbursts.

Exoplanets

** The Space Show – Tue, 01/21/2020Dr. Jeffrey Coughlin talked about “Exoplanets, the search for life, five exoplanet detection methods, exoplanet atmosphere biosignature detection and more”.

** NASA Planet Hunter Finds its 1st Earth-size Habitable-zone World – NASA

NASA’s Transiting Exoplanet Survey Satellite (TESS) has discovered its first Earth-size planet in its star’s habitable zone, the range of distances where conditions may be just right to allow the presence of liquid water on the surface. Scientists confirmed the find, called TOI 700 d, using NASA’s Spitzer Space Telescope and have modeled the planet’s potential environments to help inform future observations.

TOI 700 d is one of only a few Earth-size planets discovered in a star’s habitable zone so far. Others include several planets in the TRAPPIST-1 system and other worlds discovered by NASA’s Kepler Space Telescope.

“TESS was designed and launched specifically to find Earth-sized planets orbiting nearby stars,” said Paul Hertz, astrophysics division director at NASA Headquarters in Washington. “Planets around nearby stars are easiest to follow-up with larger telescopes in space and on Earth. Discovering TOI 700 d is a key science finding for TESS. Confirming the planet’s size and habitable zone status with Spitzer is another win for Spitzer as it approaches the end of science operations this January.”

** TESS Discovers Its 1st Planet Orbiting 2 Stars – NASA

In 2019, when Wolf Cukier finished his junior year at Scarsdale High School in New York, he joined NASA’s Goddard Space Flight Center in Greenbelt, Maryland, as a summer intern. His job was to examine variations in star brightness captured by NASA’s Transiting Exoplanet Survey Satellite (TESS) and uploaded to the Planet Hunters TESS citizen science project.

“I was looking through the data for everything the volunteers had flagged as an eclipsing binary, a system where two stars circle around each other and from our view eclipse each other every orbit,” Cukier said. “About three days into my internship, I saw a signal from a system called TOI 1338. At first I thought it was a stellar eclipse, but the timing was wrong. It turned out to be a planet.”

A SETI Institute view on the TESS findings:

Interstellar space

** Voyager 2, 18.5 billion kilometers from earth, recovers after power glitch: Voyager 2 Engineers Working to Restore Normal Operations – NASA JPL

Engineers for NASA’s Voyager 2 spacecraft are working to return the mission to normal operating conditions after one of the spacecraft’s autonomous fault protection routines was triggered. Multiple fault protection routines were programmed into both Voyager 1 and Voyager 2 in order to allow the spacecraft to automatically take actions to protect themselves if potentially harmful circumstances arise. At NASA’s Jet Propulsion Laboratory in Pasadena, California, engineers are still communicating with the spacecraft and receiving telemetry.

Launched in 1977, Voyager 1 and Voyager 2 are both in interstellar space, making them the most distant human-made objects in the solar system. On Saturday, Jan. 25, Voyager 2 didn’t execute a scheduled maneuver in which the spacecraft rotates 360 degrees in order to calibrate its onboard magnetic field instrument. Analysis of the telemetry from the spacecraft indicated that an unexplained delay in the onboard execution of the maneuver commands inadvertently left two systems that consume relatively high levels of power operating at the same time. This caused the spacecraft to overdraw its available power supply.

It’s a long way to make a service call:

It has taken the team several days to assess the current situation primarily because of Voyager 2’s distance from Earth – about 11.5 billion miles (18.5 billion kilometers). Communications traveling at the speed of light take about 17 hours to reach the spacecraft, and it takes another 17 hours for a response from the spacecraft to return to Earth. As a result, mission engineers have to wait about 34 hours to find out if their commands have had the desired effect on the spacecraft.

Voyager 1 Entering Interstellar Space (Artist Concept)
“This artist’s concept depicts one of NASA’s Voyager spacecraft entering interstellar space, or the space between stars. Interstellar space is dominated by the plasma, or ionized gas, that was ejected by the death of nearby giant stars millions of years ago.” Credit: NASA/JPL-Caltech

Sun

** An update on activity on the Sun’s surface: Sunspot update: The record flatline continues | Behind The Black

In the month of December 2019 the Sun continued its longest stretch of overall sunspot inactivity ever recorded, reaching seven months in length. At no point since the last grand minimum in the 1600s have scientists ever seen so few sunspots over so long a time period.

December saw only two sunspots, both becoming active on the same day, December 24. Both also had a polarity belonging to the next solar cycle, providing evidence that we will have another sunspot maximum sometime in the next five years, and that we are not heading to another grand minimum where there are no sunspots for decades.

See SpaceWeather.com for daily updates on sunspots.

** Parker Solar Probe sets new record for spacecraft nearness to the Sun: Parker Solar Probe Completes Fourth Closest Approach, Breaks New Speed and Distance Records – Parker Solar Probe/NASA

At 4:37 a.m. EST on Jan. 29, 2020, NASA’s Parker Solar Probe broke speed and distance records as it completed its fourth close approach of the Sun. The spacecraft traveled 11.6 million miles from the Sun’s surface at perihelion, reaching a speed of 244,225 miles per hour. These achievements topple Parker Solar Probe’s own previous records for closest spacecraft to the Sun — previously about 15 million miles from the Sun’s surface — and fastest human-made object, before roughly 213,200 miles per hour.

Parker Solar Probe will continue to fly ever closer to the Sun on its seven-year journey, exploring regions of space never visited before and providing scientists with key measurements to help unveil the mysteries of the solar corona and wind.

As with most of Parker Solar Probe’s close approaches, the spacecraft is out of contact with Earth for several days around perihelion.

Listen to the sounds of the Sun as recorded by the probe: Parker Solar Probe Team Hears First Whispers of the Solar Wind’s Birth – JHU-APL

There’s a wind that emanates from the Sun. It blows not like a soft whistle but like a hurricane’s scream. Made of electrons, protons and heavier ions, the solar wind courses through the solar system at roughly 1 million mph (1.6 million kph), barreling over everything in its path. Yet through the wind’s roar, NASA’s Parker Solar Probe hears the small chirps, squeaks and rustles that hint at the origin of this mysterious and ever-present wind. The spacecraft’s FIELDS instrument can eavesdrop on the electric and magnetic fluctuations caused by plasma waves. The Parker Solar Probe it can “hear” when the waves and particles interact with one another, recording frequency and amplitude information about these plasma waves that scientists could then play as sound waves. And it results in some striking sounds. Solar wind sounds playlist: https://soundcloud.com/jhu-apl/sets/s…

Jupiter

** Mighty Jupiter Revealed | The Planetary Society

It’s more massive than all the other planets combined. In nearly four years at Jupiter the Juno spacecraft has returned science that is revolutionizing our understanding of this gigantic world. Principal investigator Scott Bolton shows us the mysterious cyclones at its poles and that famously persistent red spot. Casey Dreier says the United States House of Representatives has proposed legislation that is at odds with NASA’s current Moon and Mars plans. John Flamsteed almost discovered Uranus! Bruce Betts will tell us where he went wrong in this week’s What’s Up space trivia contest.

[ Update: Juno flyby video created by citizen scientist Brian Swift (via Bob Zimmerman):

]

 

Moon

** China releases data and imagery from Chang’e 4 mission to the Moon’s far side:

Chinese officials marked the one-year anniversary of the Chang’e 4 mission’s historic first soft landing on the far side of the moon [January 3rd] with the public release of data collected by scientific instruments and cameras on the lunar lander and rover.

The Chang’e 4 lander and Yutu 2 rover landed together on the lunar surface Jan. 3, 2019, marking the first time a spacecraft has ever safely touched down on the far side of the moon.

Around 12 hours after touchdown, the Yutu 2 rover drove down a ramp to disembark from the Chang’e 4 mission’s stationary landing platform to begin exploring the barren lunar landscape.

Scientific instruments and cameras aboard the Chang’e 4 lander and Yutu 2 rover have downlinked measurements and numerous images in the past year. The Chang’e 4 mission relays data through a dedicated Chinese communications satellite positioned beyond the far side of the moon, with a line of sight to both Chang’e 4 and Earth-based receiving stations.

On Friday, the one-year anniversary of the mission’s successful landing, China National Space Administration and the Chinese Academy of Sciences published scientific data collected by five instruments on the Chang’e 4 lander and Yutu 2 rover.

China’s Yutu-2 rover on the Moon.

Asteroids

** In December the OSIRIS-REx team selected a spot for sample-taking on asteroid Bennu. Next August, the spacecraft will land briefly and grab a sample of regolith to return to Earth in 2023: X Marks the Spot: NASA Selects Site for Asteroid Sample Collection – OSIRIS-REx Mission

After a year scoping out asteroid Bennu’s boulder-scattered surface, the team leading NASA’s first asteroid sample return mission has officially selected a sample collection site.

The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-Rex) mission team concluded a site designated “Nightingale” – located in a crater high in Bennu’s northern hemisphere – is the best spot for the OSIRIS-REx spacecraft to snag its sample.

The OSIRIS-REx team spent the past several months evaluating close-range data from four candidate sites in order to identify the best option for the sample collection. The candidate sites – dubbed Sandpiper, Osprey, Kingfisher, and Nightingale – were chosen for investigation because, of all the potential sampling regions on Bennu, these areas pose the fewest hazards to the spacecraft’s safety while still providing the opportunity for great samples to be gathered.

“This flat projection mosaic of asteroid Bennu shows the relative locations of the primary and backup sample collection sites on the asteroid: Nightingale and Osprey. NASA’s OSIRIS-REx spacecraft is scheduled to collect a sample in summer 2020.” Credit: NASA/Goddard/University of Arizona

This month the spacecraft made a low pass over the Nightingale spot to inspect it further: OSIRIS-REx Completes Closest Flyover of Sample Site Nightingale – OSIRIS-REx Mission

Preliminary results indicate that NASA’s OSIRIS-REx spacecraft successfully executed a 0.4-mile (620-m) flyover of site Nightingale yesterday as part of the mission’s Reconnaissance B phase activities. Nightingale, OSIRIS-REx’s primary sample collection site, is located within a crater high in asteroid Bennu’s northern hemisphere.

To perform the pass, the spacecraft left its 0.75-mile (1.2-km) safe home orbit and flew an almost 11-hour transit over the asteroid, aiming its science instruments toward the 52-ft (16-m) wide sample site before returning to orbit. Science observations from this flyover are the closest taken of a sample site to date.

The primary goal of the Nightingale flyover was to collect the high-resolution imagery required to complete the spacecraft’s Natural Feature Tracking image catalog, which will document the sample collection site’s surface features – such as boulders and craters. During the sampling event, which is scheduled for late August, the spacecraft will use this catalog to navigate with respect to Bennu’s surface features, allowing it to autonomously predict where on the sample site it will make contact . Several of the spacecraft’s other instruments also took observations of the Nightingale site during the flyover event, including the OSIRIS-REx Thermal Emissions Spectrometer (OTES), the OSIRIS-REx Visual and InfraRed Spectrometer (OVIRS), the OSIRIS-REx Laser Altimeter (OLA), and the MapCam color imager.

Mars

** The European Mars Express views the northern ice cap: Rippling ice and storms at Mars’ north pole – ESA

Mars’ north polar ice cap in 3D: “This image shows shows part of the ice cap at Mars’ north pole in 3D when viewed using red-green or red-blue glasses. This anaglyph was derived from data obtained by the nadir and stereo channels of the High Resolution Stereo Camera (HRSC) on ESA’s Mars Express during spacecraft orbit 3670. It covers a part of the martian surface centred at about 244°E/85°N. North is to the upper right.” Credits: ESA

** Updates on Curiosity‘s roving from Leonard David:

“Curiosity Left B Navigation Camera image taken on Sol 2659, January 29, 2020. Credit: NASA/JPL-Caltech” via Leonard David

** More of the marvelous Martian surfaceBob Zimmerman

Convergent and Overlapping Narrow Curved Ridges” in the Martian mid-latitudes, taken by the HiRISE camera on the Mars Reconnaissance Orbiter (MRO) and here  cropped and rotated by Bob Zimmerman

** Insight‘s mole digs in reverse again:

** China to launch an Mars orbiter and rover mission in July on a Long March 5 heavy lift rocket.

The Chinese combination Mars orbiter, lander, and rover is shown here in tests for launching. Credits: China Aerospace Technology Corporation

NASA’s Mars 2020 mission aims to launch during a window between July 17 – Aug. 5, 2020 and land on Feb. 18, 2021. The rover is of a similar design to that of Curiosity, which landed on Mars on August 5, 2012. The Mars 2020 rover will soon get a name as well: Nine Finalists Chosen in NASA’s Mars 2020 Rover Naming Contest – NASA’s Mars Exploration Program.

The joint European/Russian ExoMars 2020 mission aims to launch on a Russian Proton rocket this summer and land on Mars on March 19, 2021. Problems with the parachutes need to be resolved else the mission will have to wait another two years for the next launch window: Promising progress for ExoMars parachutes – ESA

Artist’s view of the ESA Exomars rover on Mars.

 

=== Amazon Ad ===

The Planet Factory:
Exoplanets and the Search for a Second Earth

ESO: ALMA & ROSETTA find keys to the mysteries of phosphorus, a building block of life

A new report from the European Southern Observatory (ESO):

Astronomers Reveal Interstellar Thread of One of Life’s Building Blocks

This infographic shows the key results from a study that has revealed the interstellar thread of phosphorus, one of life’s building blocks.  Thanks to ALMA, astronomers could pinpoint where phosphorus-bearing molecules form in star-forming regions like AFGL 5142. The background of this infographic shows a part of the night sky in the constellation of Auriga, where the star-forming region AFGL 5142 is located. The ALMA image of this object is on the top left of the infographic, and one of the locations where the team found phosphorus-bearing molecules is indicated by a circle. The most common phosphorus-bearing molecule in AFGL 5142 is phosphorus monoxide, represented in orange and red in the diagram on the bottom left. Another molecule found was phosphorus nitride, represented in orange and blue.  Using data from the ROSINA instrument onboard ESA’s Rosetta, astronomers also found phosphorus monoxide on comet 67P/Churyumov–Gerasimenko, shown on the bottom right. This first sighting of phosphorus monoxide on a comet helps astronomers draw a connection between star-forming regions, where the molecule is created, all the way to Earth, where it played a crucial role in starting life.

Phosphorus, present in our DNA and cell membranes, is an essential element for life as we know it. But how it arrived on the early Earth is something of a mystery. Astronomers have now traced the journey of phosphorus from star-forming regions to comets using the combined powers of ALMA and the European Space Agency’s probe Rosetta. Their research shows, for the first time, where molecules containing phosphorus form, how this element is carried in comets, and how a particular molecule may have played a crucial role in starting life on our planet.

Life appeared on Earth about 4 billion years ago, but we still do not know the processes that made it possible,

says Víctor Rivilla, the lead author of a new study published today in the journal Monthly Notices of the Royal Astronomical Society. The new results from the Atacama Large Millimeter/Submillimeter Array (ALMA), in which the European Southern Observatory (ESO) is a partner, and from the ROSINA instrument on board Rosetta, show that phosphorus monoxide is a key piece in the origin-of-life puzzle.

With the power of ALMA, which allowed a detailed look into the star-forming region AFGL 5142, astronomers could pinpoint where phosphorus-bearing molecules, like phosphorus monoxide, form. New stars and planetary systems arise in cloud-like regions of gas and dust in between stars, making these interstellar clouds the ideal places to start the search for life’s building blocks.

The ALMA observations showed that phosphorus-bearing molecules are created as massive stars are formed. Flows of gas from young massive stars open up cavities in interstellar clouds. Molecules containing phosphorus form on the cavity walls, through the combined action of shocks and radiation from the infant star. The astronomers have also shown that phosphorus monoxide is the most abundant phosphorus-bearing molecule in the cavity walls.

This ALMA image shows a detailed view of the star-forming region AFGL 5142. A bright, massive star in its infancy is visible at the centre of the image. The flows of gas from this star have opened up a cavity in the region, and it is in the walls of this cavity (shown in colour), that phosphorus-bearing molecules like phosphorus monoxide are formed. The different colours represent material moving at different speeds.

After searching for this molecule in star-forming regions with ALMA, the European team moved on to a Solar System object: the now-famous comet 67P/Churyumov–Gerasimenko. The idea was to follow the trail of these phosphorus-bearing compounds. If the cavity walls collapse to form a star, particularly a less-massive one like the Sun, phosphorus monoxide can freeze out and get trapped in the icy dust grains that remain around the new star. Even before the star is fully formed, those dust grains come together to form pebbles, rocks and ultimately comets, which become transporters of phosphorus monoxide.

ROSINA, which stands for Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, collected data from 67P for two years as Rosetta orbited the comet. Astronomers had found hints of phosphorus in the ROSINA data before, but they did not know what molecule had carried it there. Kathrin Altwegg, the Principal Investigator for Rosina and an author in the new study, got a clue about what this molecule could be after being approached at a conference by an astronomer studying star-forming regions with ALMA:

She said that phosphorus monoxide would be a very likely candidate, so I went back to our data and there it was!

This first sighting of phosphorus monoxide on a comet helps astronomers draw a connection between star-forming regions, where the molecule is created, all the way to Earth.

The combination of the ALMA and ROSINA data has revealed a sort of chemical thread during the whole process of star formation, in which phosphorus monoxide plays the dominant role,

says Rivilla, who is a researcher at the Arcetri Astrophysical Observatory of INAF, Italy’s National Institute for Astrophysics.

Phosphorus is essential for life as we know it,” adds Altwegg. “As comets most probably delivered large amounts of organic compounds to the Earth, the phosphorus monoxide found in comet 67P may strengthen the link between comets and life on Earth.”

This intriguing journey could be documented because of the collaborative efforts between astronomers.

The detection of phosphorus monoxide was clearly thanks to an interdisciplinary exchange between telescopes on Earth and instruments in space,”

says Altwegg.

Leonardo Testi, ESO astronomer and ALMA European Operations Manager, concludes:

Understanding our cosmic origins, including how common the chemical conditions favourable for the emergence of life are, is a major topic of modern astrophysics. While ESO and ALMA focus on the observations of molecules in distant young planetary systems, the direct exploration of the chemical inventory within our Solar System is made possible by ESA missions, like Rosetta. The synergy between world leading ground-based and space facilities, through the collaboration between ESO and ESA, is a powerful asset for European researchers and enables transformational discoveries like the one reported in this paper.

Links

Space sciences roundup – Jan.4.2020

A sampling of recent articles, videos, and images from space-related science news items (find previous roundups here):

** Reviews of major space science news in 2019 and the past decade:

Astronomy

** Is Betelgeuse about to go supernova?  Recent dimming of the red super giant star got people discussing the possibility, but it’s unlikely to happen anytime soon (on a human timescale). Here are a couple of discussions of Betelgeuse by Scott Manley and Fraser Cain:

Exoplanets

** NASA’s ASTERIA goes silent after successfully demonstrating a low-cost smallsat can do exoplanet searches. Tiny Satellite for Studying Distant Planets Goes Quiet – NASA JPL

ASTERIA observed a handful of nearby stars and successfully demonstrated that it could achieve precision measurements of the stars’ brightness. With that data, scientists look for dips in a star’s light that would indicate an orbiting planet passing between the satellite and the star. (This planet-hunting technique is called the transit method.) Mission data is still being analyzed to confirm whether ASTERIA spotted any distant worlds.

Since completing its primary mission objectives in early February 2018, ASTERIA has continued operating through three mission extensions. During that time, it has been used as an in-space platform to test various capabilities to make CubeSats more autonomous, some of which are based on artificial intelligence programs. ASTERIA also made opportunistic observations of the Earth, a comet, other spacecraft in geo-synchronous orbit and stars that might host transiting exoplanets.

“Left to right: Electrical Test Engineer Esha Murty and Integration and Test Lead Cody Colley prepare the ASTERIA spacecraft for mass-properties measurements in April 2017 prior to spacecraft delivery ahead of launch. ASTERIA was deployed from the International Space Station in November 2017. Credit: NASA/JPL-Caltech” > Larger view

** Planetary Imaging Concept Testbed Using a Recoverable Experiment – Coronagraph (PICTURE-C)  tests techniques for direct imaging of exoplanets: A real-life deluminator for spotting exoplanets by reflected starlight – The Conversation

PICTURE-C’s coronagraph creates artificial eclipses to dim or eliminate starlight without dimming the planets that the stars illuminate. It is designed to capture faint asteroid belt like objects very close to the central star.

While a coronagraph is necessary for direct imaging of exoplanets, our 6,000 pound device also includes deformable mirrors to correct the shape of the the telescope mirrors that get distorted due to changes in gravity, temperature fluctuations and other manufacturing imperfections.

Finally, the entire device has to be held steady in space for relatively long periods of time. A specially NASA-designed gondola called Wallops Arc Second Pointer (WASP) carried PICTURE-C and got us part way. An internal image stabilization system designed by my colleagues provided the “steady hand” necessary.

Sun

** Sunspots return. After an unusually long period of about six months with few or zero spots, several appeared on the face of the Sun in December. They also displayed the change in magnetic polarization that indicates they belong to the next phase of the solar cycle. The Next Solar Cycle is Coming – SpaceWeather.com

The pace of new-cycle sunspots is definitely intensifying. 2020 is only three days old, and already there is a Solar Cycle 25 ‘spot on the sun: AR2755. The sunspot is inset in this magnetic map from NASA’s Solar Dynamics Observatory:

We know that AR755 belongs to the next solar cycle because of its magnetic polarity. It’s reversed. According to Hale’s Law, sunspot polarities flip-flop from one solar cycle to the next. During old Solar Cycle 24, we grew accustomed to sunspots in the sun’s southern hemisphere having a -/+ pattern. AR2755 is the reverse: +/-, marking it as a member of new Solar Cycle 25.

This is the 3rd consecutive month that Solar Cycle 25 sunspots have appeared: Nov. 2019, Dec. 2019, and now Jan. 2020. The quickening pace of new cycle sunspots does not mean that Solar Minimum is finished. On the contrary, low sunspot counts will likely continue for many months and maybe even years. However, it is a clear sign that Solar Cycle 25 is coming to life. The doldrums won’t last forever.

Bob Zimmerman wrote back in December about the current minimum in the solar cycle, which, even with the rise of a few new spots, is unusually long: Sunspot update Nov 2019: The longest flatline in centuries | Behind The Black

The Sun is now in what appears to be the longest stretch ever recorded, since the 11-year solar sunspot cycle reactivated in the 1700s after the last grand minimum, of sunspot inactivity. This record-setting dearth of practically no sunspots has now stretched to six months in a row.

Moon

** China’s Chang’e 4 lander and rover mission continues 1 year after landing on the far side of the Moon on January 3rd, 2019.

Asteroids and Comets

** Planetary Society announces winners of latest Shoemaker NEO Grant awards: Announcing the 2019 Shoemaker NEO Grant Winners | The Planetary Society

[The] grants support very advanced amateur astronomers around the world in their efforts to find, track, and characterize near Earth asteroids. 

The world’s professional sky surveys alone cannot handle the burden of defending the Earth from potentially dangerous asteroids. Our Shoemaker grant winners contribute in particular to two areas of planetary defense: 

    • Characterization: Some winners focus on asteroid characterization to determine asteroid properties. They typically carry out photometry (brightness) studies to determine properties like spin rate and whether what looks like one asteroid is actually two asteroids—a binary pair. This type of information will be crucial when an asteroid deflection is required, and in the meantime, for understanding the near-Earth asteroid population in general. 
    • Tracking: Other winners focus on astrometric (sky position) tracking observations that are necessary for calculating orbits, which tells us whether an asteroid will hit Earth. Without these follow-up observations of newly discovered asteroids, the asteroids can even be lost.

** SETI Institute‘s Senior Astronomer Seth Shostak discusses Comet 2I/B Borisov:

** OSIRIS-REx mission selects spot on asteroid Bennu to collect the sample that will be returned to Earth: X Marks the Spot: NASA Selects Site for Asteroid Sample Collection – OSIRIS-REx Mission

“The sample site Nightingale, OSIRIS-REx’s primary sample collection site on asteroid Bennu. The image is overlaid with a graphic of the OSIRIS-REx spacecraft to illustrate the scale of the site. Credit: NASA/Goddard/University of Arizona”

Mars

** First Drive Test of NASA’s Mars 2020 Rover – NASA JPL

On Dec. 17, 2019, engineers took NASA’s next Mars rover for its first spin. The test took place in the Spacecraft Assembly Facility clean room at NASA’s Jet Propulsion Laboratory in Pasadena, California. This was the first drive test for the new rover, which will move to Cape Canaveral, Florida, in the beginning of next year to prepare for its launch to Mars in the summer. Engineers are checking that all the systems are working together properly, the rover can operate under its own weight, and the rover can demonstrate many of its autonomous navigation functions. The launch window for Mars 2020 opens on July 17, 2020. The rover will land at Mars’ Jezero Crater on Feb. 18, 2021.

More about the Mars 2020 rover: Media Get a Close-Up of NASA’s Mars 2020 Rover – NASA’s Mars Exploration Program

Scheduled to launch in July or August 2020, the Mars 2020 rover will land in Jezero Crater on Feb. 18, 2021. There it will search for signs of past microbial life, characterize Mars’ climate and geology, collect samples for future return to Earth and pave the way for human exploration of the Red Planet.

Both to ensure that as few Earthly microbes as possible hitch a ride to Mars and to keep out particles that could interfere with the rover’s operations, High Bay 1 comes with strict cleanliness standards: Anyone entering the clean room, whether a technician or a journalist, must wear a “bunny suit,” booties, a hair cover, a face mask and latex gloves. Because notepads and writing implements could shed dust and other particles, specially-approved paper and pens were provided to visiting media members on request.

In the coming weeks, engineers and technicians will pack the 2020 rover into a specially-designed container. After it arrives at the Cape, Mars 2020 will undergo final processing and testing before launch.

Mars 2020 Media Day

** Updates on Curiosity’s roving from Leonard David:

Curiosity Right B Navigation Camera photo taken on Sol 2634, January 3, 2020. Credit: NASA/JPL-Caltech

** More analysis of images of the marvelous Martian surface – Bob Zimmerman

Darkened craters on the Elysium Planitia plain. Credits: NASA/Arizona State Univ. via Behind the Black. Full image.

** Are We About to Find Life on Mars? – SETI Institute

Over the past six months, numerous articles have reported weird anomalies in the atmosphere of Mars, from an outburst of methane in June 2019 to patterns in oxygen concentrations that cannot be explained by any known atmospheric or surface processes on the Red Planet. Perhaps more intriguing is the Viking Lander (Viking LR) experiment. In 1976, each of the two Viking landers performed experiments on Martian soil samples. The samples tested positive for metabolism, and researchers recently claimed that like on Earth, this is a sign for the presence of a Martian life. Finally, an Ohio scientist claims to have found photographic proof of “insect and reptile-like” life on Mars. This controversial result has been discussed at length in the media, even though most scientists rejected it.

What does this mean? Are we on the verge of announcing the most profound story since humans first wondered about the existence of life elsewhere? Or are these coincidences that can be explained by geological processes, failed experiments or pareidolia?

We invited two SETI Institute scientists who are experts on Mars to discuss these exciting and out of this world results. Biologist Kathryn Bywaters who has studied life in some of the most extreme environments on Earth and planetary scientist Pascal Lee who focuses on water on Mars and human exploration of the Red Planet. Both scientists will tell us if indeed we are about to discover life on Mars and the consequences of this significant discovery.

=== Amazon Ad ===

The Planet Factory:
Exoplanets and the Search for a Second Earth