Category Archives: Pluto and beyond

New Horizons: Sharpest images yet of Pluto’s diverse surface

The New Horizons probe will be slowly downloading images and data from its July flyby of Pluto over the next year. Yesterday the mission released the highest resolutions images yet obtained of the surface of Pluto.

New Horizons Returns the First of Its Very Best Images of Pluto

NASA’s New Horizons spacecraft has sent back the first few of a series of the sharpest views of Pluto it obtained during its July flyby – and this image sequence forms the best close-ups of Pluto that humans may see for decades.

Every week the piano-sized New Horizons spacecraft transmits data stored on its digital recorders from its flight through the Pluto system on July 14. These latest pictures are part of a sequence taken near New Horizons’ closest approach to Pluto, with resolutions of about 250-280 feet (77-85 meters) per pixel – revealing features less than half the size of a city block on the diverse surface of the distant planet. In these new images, New Horizons captured a wide variety of spectacular, cratered, mountainous and glacial terrains.

MountainousShorline[1]
The Mountainous Shoreline of Sputnik Planum: Great blocks of Pluto’s water-ice crust appear jammed together in the informally named al-Idrisi mountains. Some mountain sides appear coated in dark material, while other sides are bright. (Click for full image and caption)
“These close-up images, showing the diversity of terrain on Pluto, demonstrate the power of our robotic planetary explorers to return intriguing data to scientists back here on planet Earth,” said John Grunsfeld, former astronaut and associate administrator for NASA’s Science Mission Directorate. “New Horizons thrilled us during the July flyby with the first close images of Pluto, and as the spacecraft transmits the treasure trove of images in its onboard memory back to us, we continue to be amazed by what we see.”

The images being released today form a strip 50 miles (80 kilometers) wide trending from Pluto’s jagged horizon about 500 miles (800 kilometers) northwest of the informally named Sputnik Planum, across the al-Idrisi mountains, onto the shoreline of Sputnik and then across its icy plains.

CratersandPlains[1]
Layered Craters and Icy Plains: Pluto’s rugged, icy cratered plains include layering in the interior walls of many craters. Layers in geology usually mean an important change in composition or event, but at the moment New Horizons team members do not know if they are seeing local, regional or global layering. (Click for full image and caption)
“These new images give us a breathtaking, super-high resolution window into Pluto’s geology,” said New Horizons Principal Investigator Alan Stern, of Southwest Research Institute (SwRI) in Boulder, Colorado. “Nothing of this quality was available for Venus or Mars until decades after their first flybys; yet at Pluto we’re there already – down among the craters, ice fields and mountains – less than five months after flyby! The science we can do with these images is simply unbelievable.”

A video made from these images reveals amazing details on a world 3 billion miles away – as do individual close-ups taken from the wider swath. The images are six times better than the resolution of the global Pluto map New Horizons obtained, and five times better than the best images of Pluto’s cousin Triton, Neptune’s large moon, obtained by Voyager 2 in 1989.

Very Best Views of Pluto: This movie is composed of the sharpest views of Pluto that NASA’s New Horizons spacecraft obtained during its flyby of the distant planet on July 14, 2015. The pictures are part of a sequence taken near New Horizons’ closest approach to Pluto, with resolutions of about 250-280 feet (77-85 meters) per pixel – revealing features smaller than half a city block on Pluto’s diverse surface. The images include a wide variety of spectacular, cratered, mountainous and glacial terrains – giving scientists and the public alike a breathtaking, super-high resolution window on Pluto’s geology. Click for full caption – Click for the full image

“The mountains bordering Sputnik Planum are absolutely stunning at this resolution” added New Horizons science team member John Spencer. “The new details revealed here, particularly the crumpled ridges in the rubbly material surrounding several of the mountains, reinforce our earlier impression that the mountains are huge ice blocks that have been jostled and tumbled and somehow transported to their present locations.”

These images were made with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, in a timespan of about a minute centered on 11:36 UT on July 14 – just about 15 minutes before New Horizons’ closest approach to Pluto – from a range of just 10,000 miles (17,000 kilometers). They were obtained with an unusual observing mode; instead of working in the usual “point and shoot,” LORRI snapped pictures every three seconds while the Ralph/Multispectral Visual Imaging Camera (MVIC) aboard New Horizons was scanning the surface. This mode requires unusually short exposures to avoid blurring the images.

PlutosBadlands[1]
Pluto’s Badlands: Erosion and faulting has sculpted portions of Pluto’s icy crust into rugged badlands. The prominent 1.2-mile-high cliff at the top, running from left to upper right, is part of a great canyon system that stretches for hundreds of miles across Pluto’s northern hemisphere. (Click for full image and caption)
Mission scientists expect more imagery from this set over the next several days, showing even more terrain at this highest resolution.

New Horizons, speeding through deep space at more than 32,000 miles per hour, is approximately 104 million miles (167 million kilometers) beyond Pluto and 3.2 billion miles (5.2 billion kilometers) from Earth. All spacecraft systems are healthy.

New Horizons is part of NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, designed, built, and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. The Southwest Research Institute leads the mission and mission science, payload operations, and encounter science planning.

New Horizons: Latest results include possible ice volcanoes, geology ancient and young, spinning moons, and more

At an American Astronomical Society (AAS) Planetary Sciences Meeting today, the New Horizons team brought a truckload of results to present from the probe’s flyby of the Pluto system. Copies of their presentation slides are available at: Science Results from the New Horizons Encounter with Pluto – Presentations – New Horizons.

An overview of the findings was released:

At Pluto, New Horizons Finds Geology of All Ages,
Possible Ice Volcanoes, Insight into Planetary Origins

From possible ice volcanoes to geologically diverse surfaces to oddly behaving moons that could have formed through mergers of smaller moons, Pluto system discoveries continue to surprise scientists on NASA’s New Horizons mission team.

“The New Horizons mission has taken what we thought we knew about Pluto and turned it upside down,” said Jim Green, director of planetary science at NASA Headquarters in Washington. “It’s why we explore – to satisfy our innate curiosity and answer deeper questions about how we got here and what lies beyond the next horizon.”

Mountains1[1]
The informally named feature Wright Mons, located south of Sputnik Planum on Pluto, is an unusual feature that’s about 100 miles (160 kilometers) wide and 13,000 feet (4 kilometers) high. It displays a summit depression (visible in the center of the image) that’s approximately 35 miles (56 kilometers) across, with a distinctive hummocky texture on its sides. The rim of the summit depression also shows concentric fracturing. New Horizons scientists believe that this mountain and another, Piccard Mons, could have been formed by the ‘cryovolcanic’ eruption of ices from beneath Pluto’s surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The New Horizons team is discussing numerous findings at the 47th Annual Meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Society (AAS) this week in National Harbor, Maryland. Just four months after the spacecraft encountered Pluto, science team members are presenting more than 50 reports on exciting discoveries.

CryoVolcanism_Mountains-Rt-txt[1]
Scientists using New Horizons images of Pluto’s surface to make 3-D topographic maps have discovered that two of Pluto’s mountains, informally named Wright Mons and Piccard Mons, could possibly be ice volcanoes. The color is shown to depict changes in elevation, with blue indicating lower terrain and brown showing higher elevation; green terrains are at intermediate heights. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute. Version with no captions.
“It’s hard to imagine how rapidly our view of Pluto and its moons are evolving as new data stream in each week. As the discoveries pour in from those data, Pluto is becoming a star of the solar system,” said mission Principal Investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado. “Moreover, I’d wager that for most planetary scientists, any one or two of our latest major findings on one world would be considered astounding. To have them all is simply incredible.”

In one such discovery, New Horizons geologists have combined images of Pluto’s surface to make 3-D maps that indicate that two of Pluto’s most distinctive mountains could be cryovolcanoes—ice volcanoes that may have been active in the recent geological past.

The two cryovolcano candidates are large features measuring tens of miles (tens of kilometers) across and several miles or kilometers high. “These are big mountains with a large hole in their summit, and on Earth that generally means one thing—a volcano,” said Oliver White, New Horizons postdoctoral researcher with NASA’s Ames Research Center, Moffett Field, California. While their appearance is similar to volcanoes on Earth that spew molten rock, ice volcanoes on Pluto are expected to emit a somewhat melted slurry of substances such as water ice, nitrogen, ammonia, or methane on Pluto.

Pluto_Crater_Counts_rectangular_projection[1]
Locations of more than 1,000 craters mapped on Pluto by NASA’s New Horizons mission indicate a wide range of surface ages, which likely means that Pluto has been geologically active throughout its history. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
White stresses that the team’s interpretation of these features as volcanoes is tentative. However, “If they are volcanic, then the summit depression would likely have formed via collapse as material is erupted from underneath. The strange hummocky texture of the mountain flanks may represent volcanic flows of some sort that have travelled down from the summit region and onto the plains beyond, but why they are hummocky, and what they are made of, we don’t yet know.”

If Pluto is proven to have volcanoes, it will provide an important new clue to its geologic and atmospheric evolution. “After all, nothing like this has been seen in the deep outer solar system,” said Jeffrey Moore, New Horizons Geology, Geophysics and Imaging team leader, also from NASA Ames.

Pluto’s Long History of Geologic Activity

Another of the more surprising findings from New Horizons is the wide range of surface ages found on Pluto, from ancient to intermediate to relatively young in geological terms. Crater counts used to determine surface unit ages indicate that Pluto has ancient surface areas dating to just after the formation of the planets, about 4 billion years ago. In addition, there’s a vast area that was geologically born “yesterday,” meaning it may have formed within the past 10 million years. This area – informally named Sputnik Planum – appears on the left side of Pluto’s “heart” and is completely impact-free in all images returned to date.

Scientists wondered if Sputnik Planum’s smooth, icy plains were an oddity; did a recent geological episode form the plains long after all other geologic activity ceased?

Apparently not. New data from crater counts reveal the presence of intermediate or “middle-aged” terrains on Pluto as well. This suggests that Sputnik Planum is not an anomaly—that Pluto has been geologically active throughout much of its more than 4-billion-year history. “We’ve mapped more than a thousand craters, which vary greatly in size and appearance,” said postdoctoral researcher Kelsi Singer, of the Southwest Research Institute (SwRI) in Boulder, Colorado. “Among other things, I expect cratering studies like these to give us important new insights into how this part of the solar system formed.”

Building Blocks of the Solar System

Crater counts are giving the New Horizons team insight into the structure of the Kuiper Belt itself. The dearth of smaller craters across Pluto and its large moon Charon indicate that the Kuiper Belt likely had fewer smaller objects than some models had predicted. This leads New Horizons scientists to doubt a longstanding model that all Kuiper Belt objects formed by accumulating much smaller objects of less than a mile wide. The absence of small craters on Pluto and Charon support other models theorizing that Kuiper Belt objects tens of miles across may have formed directly, at their current—or close to current—size.

In fact, the evidence that many Kuiper Belt objects could have been “born large” has scientists excited that New Horizons’ next potential target – the 30-mile-wide (40-50 kilometer wide) KBO named 2014 MU69 – which may offer the first detailed look at just such a pristine, ancient building block of the solar system.

Spinning, Merged Moons

The New Horizons mission is also shedding new light on Pluto’s fascinating system of moons and their unusual properties. For example, nearly every other moon in the solar system, including Earth’s moon, is in synchronous rotation, but not so of Pluto’s small moons. These small satellites are spinning much faster, with Hydra – the most distant moon – rotating an unprecedented 89 times during a single lap around Pluto. Scientists believe these spin rates could be chaotic (i.e., variable) because Charon exerts a strong torque that prevents each small moon from settling down into synchronous rotation, which means keeping one face toward the planet.

Most inner moons in the solar system keep one face pointed toward their central planet; this animation shows that certainly isn’t the case with the small moons of Pluto, which behave like spinning tops. Pluto is shown at center with, in order, from smaller to wider orbit: Charon, Styx, Nix, Kerberos and Hydra.  Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Another oddity of Pluto’s moons: scientists expected the satellites to wobble, but not to this degree. “Pluto’s moons are behaving like spinning tops,” said co-investigator Mark Showalter of the SETI Institute in Mountain View, California.

Images of Pluto’s four smallest satellites also indicate that several of them could have been born from mergers of two or more former moons, suggesting the presence of more moons at some point. “We suspect from this that Pluto had more moons in the past, in the aftermath of the big impact that also created Charon,” said Showalter.

MergedBodies[1]
New Horizons data indicates that at least two (and possibly all four) of Pluto’s small moons may be the result of mergers between still smaller moons. If this discovery is borne out with further analysis, it could provide important new clues to the formation of the Pluto system. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Pluto’s Frigid, Extended Atmosphere

The New Horizons team is presenting new data at DPS that reveal Pluto’s upper atmosphere is significantly colder and therefore more compact than Earth-based models had indicated. As a result, scientists have discovered that Pluto’s atmospheric escape rate is thousands of times lower than had been thought. It now appears that Pluto’s atmosphere escapes by the same mechanism as do gases from the atmospheres of Earth and Mars – rather than the previously believed escape process that more resembled escape from cometary atmospheres.

New Horizons is part of NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, designed, built, and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. The Southwest Research Institute leads the science mission, payload operations, and encounter science planning.

For more information on the New Horizons mission, including fact sheets, video and images, visit www.nasa.gov/newhorizons and pluto.jhuapl.edu.

New Horizons: Maneuvering for Kuiper Belt target + Family portrait of Pluto’s moons

The New Horizons probe, which is still returning data from its encounter with Pluto, will fly by another distant object on January 1, 2019 if everything goes as planned. The spacecraft has just carried out

the second in a series of four maneuvers propelling it toward an encounter with the ancient Kuiper Belt object 2014 MU69, a billion miles farther from the sun than Pluto.

More about this at:

NH-Trajectory-to-KBO_20151016-no%20date[1]
On Course: Projected path of NASA’s New Horizons spacecraft toward 2014 MU69, which orbits in the Kuiper Belt about 1 billion miles beyond Pluto. Planets are shown in their positions on Jan. 1, 2019, when New Horizons is projected to reach the small Kuiper Belt object. NASA must approve an extended mission for New Horizons to study MU69.

Meanwhile, the data from the flyby continues to flow back to earth. (It will take over a year to return all the data due to the low data transmission rate from the distant probe.) Here is a report on one of Pluto’s moons:

Last of Pluto’s Moons – Mysterious Kerberos
– Revealed by New Horizons

Images of Pluto’s tiny moon tiny Kerberos taken by NASA’s New Horizons spacecraft – and just sent back to Earth this week – complete the family portrait of Pluto’s moons.

pluto_moons_family_portrait[1]
Family Portrait of Pluto’s Moons: This composite image shows a sliver of Pluto’s large moon, Charon, and all four of Pluto’s small moons, as resolved by the Long Range Reconnaissance Imager (LORRI) on the New Horizons spacecraft. All the moons are displayed with a common intensity stretch and spatial scale (see scale bar). Charon is by far the largest of Pluto’s moons, with a diameter of 751 miles (1,212 kilometers). Nix and Hydra have comparable sizes, approximately 25 miles (40 kilometers) across in their longest dimension above. Kerberos and Styx are much smaller and have comparable sizes, roughly 6-7 miles (10-12 kilometers) across in their longest dimension. All four small moons have highly elongated shapes, a characteristic thought to be typical of small bodies in the Kuiper Belt. Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Kerberos appears to be smaller than scientists expected and has a highly-reflective surface, counter to predictions prior to the Pluto flyby in July. “Once again, the Pluto system has surprised us,” said New Horizons Project Scientist Hal Weaver, of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

The new data, downlinked from the New Horizons spacecraft on Oct. 20, show that Kerberos appears to have a double-lobed shape, with the larger lobe approximately 5 miles (8 kilometers) across and the smaller lobe approximately 3 miles (5 kilometers) across. Science team members speculate from its unusual shape that Kerberos could have been formed by the merger of two smaller objects. The reflectivity of Kerberos’s surface is similar to that of Pluto’s other small moons (approximately 50 percent) and strongly suggests Kerberos, like the others, is coated with relatively clean water ice.

Before the New Horizons encounter with Pluto, researchers had used Hubble Space Telescope images to “weigh” Kerberos by measuring its gravitational influence on its neighboring moons.  That influence was surprisingly strong, considering how faint Kerberos was. They theorized that Kerberos was relatively large and massive, appearing faint only because its surface was covered in dark material.  But the small, bright-surfaced, Kerberos now revealed by these new images show that that idea was incorrect, for reasons that are not yet understood.

“Our predictions were nearly spot-on for the other small moons, but not for Kerberos,” said New Horizons co-investigator Mark Showalter, of the SETI Institute in Mountain View, California. The new results are expected to lead to a better understanding of Pluto’s fascinating satellite system.

kerberos[1]
Kerberos Revealed. This image of Kerberos was created by combining four individual Long Range Reconnaissance Imager (LORRI) pictures taken on July 14, approximately seven hours before New Horizons’ closest approach to Pluto, at a range of 245,600 miles (396,100 km) from Kerberos. The image was deconvolved to recover the highest possible spatial resolution and oversampled by a factor of eight to reduce pixilation effects. Kerberos appears to have a double-lobed shape, approximately 7.4 miles (12 kilometers) across in its long dimension and 2.8 miles (4.5 kilometers) in its shortest dimension. Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

New Horizons: Pluto’s blue haze and water ice + Moons Nix and Hydra

The latest findings from the New Horizons mission:

Pluto’s Big Moon Charon Reveals a Colorful and Violent History

The first color images of Pluto’s atmospheric hazes, returned by NASA’s New Horizons spacecraft last week, reveal that the hazes are blue.

Blue-Skies-on-Pluto-FINAL[1]
Pluto’s Blue Sky: Pluto’s haze layer shows its blue color in this picture taken by the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC). The high-altitude haze is thought to be similar in nature to that seen at Saturn’s moon Titan. The source of both hazes likely involves sunlight-initiated chemical reactions of nitrogen and methane, leading to relatively small, soot-like particles (called tholins) that grow as they settle toward the surface. This image was generated by software that combines information from blue, red and near-infrared images to replicate the color a human eye would perceive as closely as possible. (Credit: NASA/JHUAPL/SwRI)
“Who would have expected a blue sky in the Kuiper Belt? It’s gorgeous,” said Alan Stern, New Horizons principal investigator from Southwest Research Institute (SwRI), Boulder, Colorado.

The haze particles themselves are likely gray or red, but the way they scatter blue light has gotten the attention of the New Horizons science team. “That striking blue tint tells us about the size and composition of the haze particles,” said science team researcher Carly Howett, also of SwRI. “A blue sky often results from scattering of sunlight by very small particles. On Earth, those particles are very tiny nitrogen molecules. On Pluto they appear to be larger — but still relatively small — soot-like particles we call tholins.”

context_map3-FINAL[1]
Water Ice on Pluto: Regions with exposed water ice are highlighted in blue in this composite image from New Horizons’ Ralph instrument, combining visible imagery from the Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). The strongest signatures of water ice occur along Virgil Fossa, just west of Elliot crater on the left side of the inset image, and also in Viking Terra near the top of the frame. A major outcrop also occurs in Baré Montes towards the right of the image, along with numerous much smaller outcrops, mostly associated with impact craters and valleys between mountains. The scene is approximately 280 miles (450 kilometers) across. Note that all surface feature names are informal. (Credit: NASA/JHUAPL/SwRI)
Scientists believe the tholin particles form high in the atmosphere, where ultraviolet sunlight breaks apart and ionizes nitrogen and methane molecules and allows them to react with each other to form more and more complex negatively and positively charged ions. When they recombine, they form very complex macromolecules, a process first found to occur in the upper atmosphere of Saturn’s moon Titan. The more complex molecules continue to combine and grow until they become small particles; volatile gases condense and coat their surfaces with ice frost before they have time to fall through the atmosphere to the surface, where they add to Pluto’s red coloring.

In a second major finding, New Horizons has detected numerous small, exposed regions of water ice on Pluto. The discovery was made from data collected by the Ralph spectral composition mapper on New Horizons.

“Large expanses of Pluto don’t show exposed water ice,” said science team member Jason Cook, of SwRI, “because it’s apparently masked by other, more volatile ices across most of the planet. Understanding why water appears exactly where it does, and not in other places, is a challenge that we are digging into.”

A curious aspect of the detection is that the areas showing the most obvious water ice spectral signatures correspond to areas that are bright red in recently released color images. “I’m surprised that this water ice is so red,” says Silvia Protopapa, a science team member from the University of Maryland, College Park. “We don’t yet understand the relationship between water ice and the reddish tholin colorants on Pluto’s surface.”

The New Horizons spacecraft is currently 3.1 billion miles (5 billion kilometers) from Earth, with all systems healthy and operating normally.

New Horizons is part of NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. APL designed, built, and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. SwRI leads the science mission, payload operations, and encounter science planning.

===

See also this report on two of Pluto’s smaller moons: Pluto’s Small Moons Nix and Hydra – Pluto New Horizons

Pluto and its largest moon Charon dance around each other, making circles around their common center of mass, which lies in an empty space between them. Around the dancing couple are four small moons. In order of increasing distance, their names are Styx (just beyond Charon), then Nix, Kerberos and Hydra. These tiny moons also orbit around the system’s center of mass. The orbits line up like a miniature solar system, except with a binary system at the center, similar to the planetary system around the star Kepler 47. All four of the small moons are less than about 30 miles (50 kilometers) in their longest dimension. Each has a lumpy shape because, unlike Pluto and Charon, they aren’t big enough for gravity to squish them into a ball.

Nix and Hydra were discovered in 2005, shortly before New Horizons launched in 2006, and their initials were a subtle nod to the New Horizons mission that started the search for them, just as the P and L in Pluto are a subtle nod to astronomer Percival Lowell, who began the search for Pluto.

nh-10-4blog-pluto_schem_1[1]
The orbits of Pluto and its moons Charon, Styx, Nix, Kerberos and Hydra are illustrated around their common center of mass. Credit: SwRI/S. Porter
nh-10-4blog-frame4_annotated[1]
Pluto’s moon Nix is shown in high-resolution black-and-white and lower resolution color. Credit: NASA/JHUAPL/SwRI
nh-10-4blog-hydra_stack_1_anno[1]
Pluto’s moon Hydra as seen from NASA’s New Horizons spacecraft, July 14, 2015. Credit: NASA/JHUAPL/SwRI

 

 

 

 

 

New Horizons: Images & fly-over video of Pluto’s moon Charon show a dramatic landscape

The New Horizons missions releases great imagery of Pluto’s moon Charon:

Pluto’s Big Moon Charon Reveals a Colorful and Violent History

NASA’s New Horizons spacecraft has returned the best color and the highest resolution images yet of Pluto’s largest moon, Charon – and these pictures show a surprisingly complex and violent history.

Charon-Neutral-Bright-Release[1]
Charon in Enhanced Color: NASA’s New Horizons captured this high-resolution enhanced color view of Charon just before closest approach on July 14, 2015. The colors are processed to best highlight the variation of Charon’s surface properties. (Larger image)
At half the diameter of Pluto, Charon is the largest satellite relative to its planet in the solar system. Many New Horizons scientists expected Charon to be a monotonous, crater-battered world; instead, they’re finding a landscape covered with mountains, canyons, landslides, surface-color variations and more.

“We thought the probability of seeing such interesting features on this satellite of a world at the far edge of our solar system was low,” said Ross Beyer, an affiliate of the New Horizons Geology, Geophysics and Imaging (GGI) team from the SETI Institute and NASA Ames Research Center in Mountain View, California, “but I couldn’t be more delighted with what we see!”

Charon-Detail-(with-connecting-lines)-9-29-15[1]
Charon in Detail: Charon’s cratered uplands at the top are broken by series of canyons, and replaced on the bottom by the rolling plains of the informally named Vulcan Planum. (Larger image.)
High-resolution images of the Pluto-facing hemisphere of Charon, taken by New Horizons as the spacecraft sped through the Pluto system on July 14, and transmitted to Earth on Sept. 21, reveal details of a belt of fractures and canyons just north of the moon’s equator. This great canyon system stretches across the entire face of Charon, more than a thousand miles, and probably around onto Charon’s far side. Four times as long as the Grand Canyon, and twice as deep in places, these faults and canyons indicate a titanic geological upheaval in Charon’s past.

Pluto-Charon-v2-10-1-15[1]
Strikingly Different Worlds: A composite of enhanced color images highlights the striking differences between Pluto and Charon. (Larger image)
“It looks like the entire crust of Charon has been split open,” said John Spencer, deputy lead for GGI at the Southwest Research Institute in Boulder, Colorado. “In respect to its size relative to Charon, this feature is much like the vast Valles Marineris canyon system on Mars.”

The team has also discovered that the plains south of the canyon, informally referred to as Vulcan Planum, have fewer large craters than the regions to the north, indicating that they are noticeably younger. The smoothness of the plains, as well as their grooves and faint ridges, are clear signs of wide-scale resurfacing.

One possibility for the smooth surface is a kind of cold volcanic activity, called cryovolcanism. “The team is discussing the possibility that an internal water ocean could have frozen long ago, and the resulting volume change could have led to Charon cracking open, allowing water-based lavas to reach the surface at that time,” said Paul Schenk, a New Horizons team member from the Lunar and Planetary Institute in Houston.

Even higher-resolution Charon images and composition data are still to come as New Horizons transmits data, stored on its digital recorders, over the next year – and as that happens, “I predict Charon’s story will become even more amazing!” said mission Project Scientist Hal Weaver, of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

The New Horizons spacecraft is currently 3.1 billion miles (5 billion kilometers) from Earth, with all systems healthy and operating normally.

New Horizons is part of NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. APL designed, built, and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. SwRI leads the science mission, payload operations, and encounter science planning.