Category Archives: Mars

Space science roundup – Feb.2.2019

A sampling of space and solar science items of interest:

** Parker Solar Probe update:  All Systems Go As Parker Solar Probe Begins Second Sun Orbit – Parker Solar Probe

On Jan. 19, 2019, just 161 days after its launch from Cape Canaveral Air Force Station in Florida, NASA’s Parker Solar Probe completed its first orbit of the Sun, reaching the point in its orbit farthest from our star, called aphelion. The spacecraft has now begun the second of 24 planned orbits, on track for its second perihelion, or closest approach to the Sun, on April 4, 2019.

Parker Solar Probe’s position, speed and round-trip light time as of Jan. 28, 2019. Track the spacecraft online.

** Caves and lava tubes on Mars could provide good locations for early settlements:  The many pits/caves of Mars | Behind The Black

That these pits are all in a line, and that they also in line with a shallow straight depression, strongly suggests that they are skylights into a lava tube below. Located to the northwest of Arsia Mons, the southeast-to-northwest trend of the line reinforces this conclusion, suggesting that we are looking at surface evidence of an underground lava tube that flowed down from Arsia Mons, when that giant volcano was active, eons ago.

Pits Near Arsia Mons. HiRISE on Mars Reconnaissance Orbiter

** Watch a storm on Jupiter as captured by the Juno probe: Jupiter Storm Tracker | NASA

A giant, spiraling storm in Jupiter’s southern hemisphere is captured in this animation from NASA’s Juno spacecraft. The storm is approximately 5,000 miles (8,000 kilometers) across.

The counterclockwise motion of the storm, called Oval BA, is clearly on display. A similar rotation can be seen in the famous Great Red Spot at the top of the animation.

Juno took the nine images used to produce this movie sequence on Dec. 21, between 9:24 a.m. PST (12:24 p.m. EST) and 10:07 a.m. PST (1:07 p.m. EST). At the time the images were taken, the spacecraft was between approximately 15,400 miles (24,800 kilometers) and 60,700 miles (97,700 kilometers) from the planet’s cloud tops above southern latitudes spanning about 36 to 74 degrees.

Citizen scientists Gerald Eichstädt and Seán Doran created this animation using data from the spacecraft’s JunoCam imager.

JunoCam’s raw images are available for the public to peruse and to process into image products at: http://missionjuno.swri.edu/junocam.   

More information about Juno is at: http://www.nasa.gov/juno and http://missionjuno.swri.edu.

** Curiosity sensors measure local gravity and researchers use the data to estimate local ground densities: ‘Mars Buggy’ Curiosity Measures a Mountain’s Gravity | NASA

In a new paper in Science, the researchers detail how they repurposed sensors used to drive the Curiosity rover and turned them into gravimeters, which measure changes in gravitational pull. That enabled them to measure the subtle tug from rock layers on lower Mount Sharp, which rises 3 miles (5 kilometers) from the base of Gale Crater and which Curiosity has been climbing since 2014. The results? It turns out the density of those rock layers is much lower than expected.  

Just like a smartphone, Curiosity carries accelerometers and gyroscopes. Moving your smartphone allows these sensors to determine its location and which way it’s facing. Curiosity’s sensors do the same thing but with far more precision, playing a crucial role in navigating the Martian surface on each drive. Knowing the rover’s orientation also lets engineers accurately point its instruments and multidirectional, high-gain antenna.

A Mars Buggy and a Moon Buggy: Side-by-side images depict NASA’s Curiosity rover (left) and a moon buggy driven during the Apollo 16 mission. Credit: NASA/JPL-Caltech. Full image & caption ›

By happy coincidence, the rover’s accelerometers can be used like Apollo 17’s gravimeter. The accelerometers detect the gravity of the planet whenever the rover stands still. Using engineering data from the first five years of the mission, the paper’s authors measured the gravitational tug of Mars on the rover. As Curiosity ascends Mount Sharp, the mountain adds additional gravity — but not as much as scientists expected.

“The lower levels of Mount Sharp are surprisingly porous,” said lead author Kevin Lewis of Johns Hopkins University. “We know the bottom layers of the mountain were buried over time. That compacts them, making them denser. But this finding suggests they weren’t buried by as much material as we thought.”

** Sounding rocket flies through the Aurora Borealis after launch from Norway:  To Catch a Wave, Rocket Launches From Top of World | NASA

On Jan. 4, 2019, at 4:37 a.m. EST the CAPER-2 mission launched from the Andøya Space Center in Andenes, Norway, on a 4-stage Black Brant XII sounding rocket. Reaching an apogee of 480 miles high before splashing down in the Arctic Sea, the rocket flew through active aurora borealis, or northern lights, to study the waves that accelerate electrons into our atmosphere.

CAPER-2, short for Cusp Alfvén and Plasma Electrodynamics Rocket-2, is a sounding rocket mission — a type of spacecraft that carries scientific instruments on short, targeted trips to space before falling back to Earth. In addition to their relatively low price tags and quick development time, sounding rockets are ideally suited for launching into transient events — like the sudden formation of the aurora borealis, or northern lights.

An animation of the CAPER-2 sounding rocket flight into the aurora borealis.

For CAPER-2 scientists, flying through an aurora provides a peek into a process as fundamental as it is complex: How do particles get accelerated throughout space? NASA studies this phenomenon in an effort to better understand not only the space environment surrounding Earth — and thus protect our technology in space from radiation — but also to help understand the very nature of stars and atmospheres throughout the solar system and beyond.

====

Chasing New Horizons: Inside the Epic First Mission to Pluto

Space science: Deep water on Mars, Rovers update, & Juno mission midway

A sampling of planetary science news:

** Yet more Mars water: A new study finds evidence for a deep groundwater table on Mars: Well water likely available across Mars | Behind The Black

A science paper released today and available for download [pdf] cites evidence from about two dozen deep impact craters located from the equator to 37 degrees north latitude that Mars has a ground ice table at an elevation that also corresponds to other shoreline features.

The third take-away from this paper however is possibly the most important. The evidence suggests that this deep groundwater water table (as ice) almost certainly still exists at all latitudes, though almost entirely underground. From a future explorer’s perspective, this data reinforces the possibility that water will be accessible across much of the Martian surface. All you will have to do is dig a well, something humans have been doing on Earth for eons.

Diagram of surface feature evidence for a deep ground water table

** Curiosity on the move:  The Curiosity rover continues its long slow methodical trek up Mount Sharp – Curiosity Says Farewell to Mars’ Vera Rubin Ridge | NASA

NASA’s Curiosity rover has taken its last selfie on Vera Rubin Ridge and descended toward a clay region of Mount Sharp. The twisting ridge on Mars has been the rover’s home for more than a year, providing scientists with new samples — and new questions — to puzzle over.

On Dec. 15, Curiosity drilled its 19th sample at a location on the ridge called Rock Hall. On Jan. 15, the spacecraft used its Mars Hand Lens Imager (MAHLI) camera on the end of its robotic arm to take a series of 57 pictures, which were stitched together into this selfie. The “Rock Hall” drill hole is visible to the lower left of the rover; the scene is dustier than usual at this time of year due to a regional dust storm.

Curiosity has been exploring the ridge since September of 2017. It’s now headed into the “clay-bearing unit,” which sits in a trough just south of the ridge. Clay minerals in this unit may hold more clues about the ancient lakes that helped form the lower levels on Mount Sharp.

A selfie taken by NASA’s Curiosity Mars rover on Sol 2291 (January 15) at the “Rock Hall” drill site, located on Vera Rubin Ridge. Credits: NASA/JPL-Caltech/MSSS Full image and caption

** Last hope for Opportunity: NASA JPL will try some new techniques in hopes of awakening the long silent Opportunity rover – Rover Team Beaming New Commands to Opportunity on Mars – NASA JPL

Engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, have begun transmitting a new set of commands to the Opportunity rover in an attempt to compel the 15-year-old Martian explorer to contact Earth. The new commands, which will be beamed to the rover during the next several weeks, address low-likelihood events that could have occurred aboard Opportunity, preventing it from transmitting.

The rover’s last communication with Earth was received June 10, 2018, as a planet-wide dust storm blanketed the solar-powered rover’s location on Mars.

“We have and will continue to use multiple techniques in our attempts to contact the rover,” said John Callas, project manager for Opportunity at JPL. “These new command strategies are in addition to the ‘sweep and beep’ commands we have been transmitting up to the rover since September.” With “sweep and beep,” instead of just listening for Opportunity, the project sends commands to the rover to respond back with a beep.

** Juno midway in Jupiter mission: The Juno spacecraft in December completed its 16th orbit of Jupiter, halfway to the 32 orbit target to complete its primary mission – NASA’s Juno Mission Halfway to Jupiter Science | NASA

“With our 16th science flyby, we will have complete global coverage of Jupiter, albeit at coarse resolution, with polar passes separated by 22.5 degrees of longitude,” said Jack Connerney, Juno deputy principal investigator from the Space Research Corporation in Annapolis, Maryland. “Over the second half of our prime mission — science flybys 17 through 32 — we will split the difference, flying exactly halfway between each previous orbit. This will provide coverage of the planet every 11.25 degrees of longitude, providing a more detailed picture of what makes the whole of Jupiter tick.”

Launched on Aug. 5, 2011, from Cape Canaveral, Florida, the spacecraft entered orbit around Jupiter on July 4, 2016. Its science collection began in earnest on the Aug. 27, 2016, flyby. During these flybys, Juno’s suite of sensitive science instruments probes beneath the planet’s obscuring cloud cover and studies Jupiter’s auroras to learn more about the planet’s origins, interior structure, atmosphere and magnetosphere.

“We have already rewritten the textbooks on how Jupiter’s atmosphere works, and on the complexity and asymmetry of its magnetic field,” said Scott Bolton, principal investigator of Juno, from the Southwest Research Institute in San Antonio. “The second half should provide the detail that we can use to refine our understanding of the depth of Jupiter’s zonal winds, the generation of its magnetic field, and the structure and evolution of its interior.”

** A sampling of recent images from Juno:

**** Juno’s SRU Captures Jupiter Lightning

Juno’s Radiation Monitoring Investigation used the Stellar Reference Unit (SRU) star camera to collect this high-resolution image Jupiter’s northern auroral oval on May 24, 2018 (Perijove 13). Also present in the image are several small bright dots and streaks — signatures of high energy relativistic electrons from polar beams that are penetrating the camera. The large bright dot in the lower right corner of the image is a flash of Jupiter’s lightning. Juno was less than 37,000 miles (60,000 km) from the cloud tops when this SRU image was collected — the closest view of Jupiter’s aurora with a visible light imager.

**** Juno’s Latest Flyby of Jupiter Captures Two Massive Storms

“This image of Jupiter’s turbulent southern hemisphere was captured by NASA’s Juno spacecraft as it performed its most recent close flyby of the gas giant planet on Dec. 21, 2018. This new perspective captures the notable Great Red Spot, as well as a massive storm called Oval BA. The storm reached its current size when three smaller spots collided and merged in the year 2000. The Great Red Spot, which is about twice as wide as Oval BA, may have formed from the same process centuries ago.” – NASA JPL

**** PJ12-83 – Jupiter during Perijove 17

Jupiter during Juno 17th orbit. Credits: Kevin M. Gill at Junocam public image processing gallery
**** Jupiter at home in the Milky Way

“Jupiter at Home in the Milky Way” – Credits: CosmEffect at  Junocam public image processing gallery
See also

====

Chasing New Horizons: Inside the Epic First Mission to Pluto

Space Science: Planetary rover update, Martian slope streaks, Lunar eclipse flash

Some space science items of interest:

** Planetary rover update: January 22, 2019 | Behind The Black – Bob Zimmerman reports on the status and plans for the Mars rovers and the Chinese Yutu-2 rover on the Moon.

Since November Curiosity has remained on the top of Vera Rubin Ridge, where it drilled its third successful hole there, out of a total of six drilling attempts. The failures were partly because of the hardness of the rock on the ridge, and partly because they are using a new drilling technique because of the failure of the drill’s feed mechanism. Instead of having the feed mechanism push the drill down into the rock, they use the robot arm itself. This has required care because the last thing they want to do is damage the arm itself.

The image [below] shows where Curiosity is heading in next year or two and was discussed in detail in my December 19, 2018 post, Curiosity’s future travels.

Mars Reconnaissance Orbiter (MRO) image “Monitor Region Near Curiosity Rover” annotated by Robert Zimmerman at www.behindtheblack.com

** Planetary Scientists Continue to Puzzle Over the Mysterious Slope Streaks on Mars. Liquid? Sand? What’s Causing Them? – Universe Today – Investigations into what causes the long streaks down the sides of hill and mountain slopes on Mars.

“A splitting slope streak on Mars captured by HiRISE”. Credit NASA JPL,University of Arizona via Universe Today

Since they were first observed in the 1970s by the Viking missions, the slope streaks that periodically appear along slopes on Mars have continued to intrigue scientists. After years of study, scientists still aren’t sure exactly what causes them. While some believe that “wet” mechanisms are the culprit, others think they are the result of “dry” mechanisms.

Luckily, improvements in high-resolution sensors and imaging capabilities – as well as improved understanding of Mars’ seasonal cycles – is bringing us closer to an answer. Using a terrestrial analog from Bolivia, a research team from Sweden recently conducted a study that explored the mechanisms for streak formation and suggest that wet mechanisms appear to account for more, which could have serious implications for future missions to Mars.

** Lunar impact flash observed during eclipse – During the lunar “Blood Moon” eclipse on January 21st, a meteoroid impact was observed as seen in this video:

These images correspond to a lunar impact flash spotted by the telescopes operating in the framework of the MIDAS survey on Jan. 21, at 4:41:38 universal time (23:41:38 US eastern time). The impact took place during the totality phase of the lunar eclipse. The flash was produced by a rock (a meteoroid) that hit the lunar ground. The MIDAS Survey is being conducted by the University of Huelva and the Institute of Astrophysics of Andalusia.

Scott Manley discusses the impact:

More at:

Meteoroids hit the Moon all the time. Literally. NASA has been observing the impact flashes since 2005. Recently, other groups in Europe have joined the hunt. Flashes are typically observed once every 2 or 3 hours of observing time. Impactors range in size from softballs to boulders, liberating energies equal to tons of TNT when they strike.

The rare thing about this strike is that it was photographed during a full Moon, when lunar glare usually overwhelms the glow of any fireball. During the eclipse, Earth’s shadow turned lunar day into almost-night for an hour, allowing the fireball to be seen.

====

Chasing New Horizons: Inside the Epic First Mission to Pluto

Mars: Curiosity rover’s itinerary + InSight puts 1st instrument on surface + Insight imaged by itself and by MRO

[ Update: A brief video report from NASA JPL on Mars exploration news:

]

Bob Zimmerman looks at where the Curiosity rover is heading in the coming weeks: Curiosity’s future travels | Behind The Black.

The peak of Mount Sharp is quite a distance to the south, far beyond the bottom of the photograph. Even in these proposed travels the rover will remain in the mountain’s lowest foothills, though the terrain will be getting considerably more dramatic.

===

And here is a NASA JPL update on what Curiosity has been doing recently: Sol 2264: Science and Good Times at Rock Hall – Curiosity Mission Updates – Dec.18.2018

We are still very excited and happy that the final drill hole, “Rock Hall,” on Vera Rubin Ridge was successful over the weekend. Now we get to analyze the drilled sample with rover instruments. We are planning one sol today, and the big event will be delivering some of the Rock Hall sample to the CheMin instrument.

===

The InSight Lander continues to prepare its equipment for examining the interior of the Red Planet. The seismometer has now been placed on the ground: NASA’s InSight Places First Instrument on Mars | NASA

NASA’s InSight lander has deployed its first instrument onto the surface of Mars, completing a major mission milestone. New images from the lander show the seismometer on the ground, its copper-colored covering faintly illuminated in the Martian dusk. It looks as if all is calm and all is bright for InSight, heading into the end of the year.

“InSight’s timetable of activities on Mars has gone better than we hoped,” said InSight Project Manager Tom Hoffman, who is based at NASA’s Jet Propulsion Laboratory in Pasadena, California. “Getting the seismometer safely on the ground is an awesome Christmas present.”  

NASA’s InSight lander placed its seismometer on Mars on Dec. 19, 2018. This was the first time a seismometer had ever been placed onto the surface of another planet. Credits: NASA/JPL-Caltech

The InSight team has been working carefully toward deploying its two dedicated science instruments onto Martian soil since landing on Mars on Nov. 26. Meanwhile, the Rotation and Interior Structure Experiment (RISE), which does not have its own separate instrument, has already begun using InSight’s radio connection with Earth to collect preliminary data on the planet’s core. Not enough time has elapsed for scientists to deduce what they want to know — scientists estimate they might have some results starting in about a year.

An image of the ground around the lander shows that Insight picked a good spot for its work:

This mosaic, made of 52 individual images from NASA’s InSight lander, shows the workspace where the spacecraft will eventually set its science instruments. The workspace is roughly 14 by 7 feet (4 by 2 meters). The lavender annotation shows where InSight’s seismometer (called the Seismic Experiment for Interior Structure, or SEIS) and heat flow probe (called the Heat Flow and Physical Properties Package, or HP3) can be placed. . Full Image and Caption

In the coming weeks, scientists and engineers will go through the painstaking process of deciding where in this workspace the spacecraft’s instruments should be placed. They will then command InSight’s robotic arm to carefully set the seismometer (called the Seismic Experiment for Interior Structure, or SEIS) and heat-flow probe (known as the Heat Flow and Physical Properties Package, or HP3) in the chosen locations. Both work best on level ground, and engineers want to avoid setting them on rocks larger than about a half-inch (1.3 cm).

“The near-absence of rocks, hills and holes means it’ll be extremely safe for our instruments,” said InSight’s Principal Investigator Bruce Banerdt of NASA’s Jet Propulsion Laboratory in Pasadena, California. “This might seem like a pretty plain piece of ground if it weren’t on Mars, but we’re glad to see that.”

InSight’s landing team deliberately chose a landing region in Elysium Planitia that is relatively free of rocks. Even so, the landing spot turned out even better than they hoped. The spacecraft sits in what appears to be a nearly rock-free “hollow” — a depression created by a meteor impact that later filled with sand. That should make it easier for one of InSight’s instruments, the heat-flow probe, to bore down to its goal of 16 feet (5 meters) below the surface.

===

InSight did take some time off recently to do a selfie: NASA’s InSight Takes Its First Selfie – NASA’s InSight Mars Lander

This is NASA InSight’s first full selfie on Mars. It displays the lander’s solar panels and deck. On top of the deck are its science instruments, weather sensor booms and UHF antenna. Image Credit: Nasa/JPL-Caltech. Full Image and Caption

NASA’s InSight lander isn’t camera-shy. The spacecraft used a camera on its robotic arm to take its first selfie — a mosaic made up of 11 images. This is the same imaging process used by NASA’s Curiosity rover mission, in which many overlapping pictures are taken and later stitched together. Visible in the selfie are the lander’s solar panel and its entire deck, including its science instruments.

And the HiRISE camera on the Mars Reconnaissance Orbiter (MRO) captured images of InSight, plus its heat shield and parachute, sitting on the ground : Mars InSight Lander Seen in First Images from Space | NASA

NASA’s InSight spacecraft, its heat shield and its parachute were imaged on Dec. 6 and 11 by the HiRISE camera onboard NASA’s Mars Reconnaissance Orbiter. Credits: NASA/JPL-Caltech/University of Arizona. Full image and caption

====

Chasing New Horizons: Inside the Epic First Mission to Pluto

China heads for the Moon’s far side, NASA listens to Martian winds, and a Dragon arrives at the ISS

Lots of activity in space this weekend:

** Moon: China launched on Friday the Chang’e-4 mission to the far side of the Moon. The 3,780 kg package includes a lander (1,200 kg), a rover (140 kg). This will be the first mission of any kind to the surface of the side of the Moon that never faces Earth due to tidal locking. A lunar orbiter was launched earlier to serve as a communications relay. The landing date has not been announced yet.

Chang’e 4 Rover on the Moon (Image: CNSA)

** Mars: Insight is busy setting up its experiments and listening to the Martian wind.

This image from InSight’s robotic-arm mounted Instrument Deployment Camera shows the instruments on the spacecraft’s deck, with the Martian surface of Elysium Planitia in the background. The image was received on Dec. 4, 2018 (Sol 8). Credits: NASA/JPL-Caltech Full image and caption

** Earth Orbit: The SpaceX Dragon, launched on a Falcon 9 from Cape Canaveral last Wednesday, rendezvoused and berthed to the ISS this morning. It joins five other spaceships attached to the station including Northrop Grumman’s Cygnus cargo vehicle, two Russian Progress cargo vehicles, and two Russian Soyuz crew vehicles.

Dec. 8, 2018: International Space Station Configuration. Six spaceships are attached at the space station including the U.S. resuppy ships Northrop Grumman Cygnus and the SpaceX Dragon; and Russia’s Progress 70 and Progress 71 resupply ships and the Soyuz MS-09 and MS-10 crew ships all from Roscosmos.

====

Check out the Best Selling Electronics at Amazon