Category Archives: Space transport roundup

Latest on all means of traveling to, from and in space.

Space transport roundup – Dec.3.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** SpaceX set to launch Starship prototype SN8 to 15 km following successful static firing of its three Raptor engines on Nov. 24th. The company currently has a FAA permit for a flight during a 3 day window opening on Dec. 4th. (There are local restrictions on closing access to the beach on weekends so the window may effectively be 1 day long.) A wet dress rehearsal took place on Wed. Dec. 2nd. Elon Musk had indicated that there would be another static firing before the flight but it looks like they may skip this.

[ Update: The flight has been postponed till Monday Dec. 7th at the earliest. Also, the max altitude will be 12.5 km rather than 15 km.]

Find more about this and other SpaceX activities below

** Arianespace launches Soyuz with reconnaissance satellite for UAE on Dec.1st from the spaceport in French Guiana: Flight VS24: Soyuz lifts off from the Spaceport in French Guiana – Arianespace

On Tuesday, December 1, at 10:33 p.m. (local time), Arianespace successfully launched the FalconEye optical observation satellite using a Soyuz rocket from the Guiana Space Center (CSG), Europe’s Spaceport in French Guiana. FalconEye is a very-high-performance optical Earth observation satellite developed in a consortium led by Airbus Defence and Space and Thales Alenia Space for the United Arab Emirates Armed Forces (UAEAF).

See also Soyuz rocket launches Emirati military satellite after lengthy delay – Spaceflight Now.

Continue reading Space transport roundup – Dec.3.2020

Space transport roundup – Nov.18.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** Crew Dragon docks to ISS a day after launch from KSC. The Falcon 9 lifted off on Sunday evening and 27 hours later the Dragon with four astronauts (Michael Hopkins, Victor Glover, Shannon Walker, and Japan Aerospace Exploration Agency’s (JAXA) Soichi Noguchi) aboard reached the station. The F9 booster successfully landed on a droneship in the Atlantic. This was the first operational mission for the Crew Dragon. Last week the system obtained official certification from NASA as a human-rated transport.

See also:

Find more about SpaceX activities below

** Arianespace Vega rocket fails to reach orbit. This is the second Vega failure in past three launches. The payload included the Earth observation satellites SEOSAT-Ingenio from Spain and TARANIS  from France, representing about $400M in value. A mix-up in cabling appears to be the prime suspect: Human error blamed for Vega launch failure – SpaceNews. See also

From ESA:

Two and a half months after Vega’s successful return to flight, the Vega launch vehicle lifted off as scheduled on 17 November at 02:52 CET / 22:52 local time on 16 November from Europe’s Spaceport in Kourou, French Guiana. The first three stages functioned nominally until the ignition of the AVUM upper stage, eight minutes after departure from the launch pad. At that time, a degraded trajectory was detected, followed by a loss of control of the vehicle and the subsequent loss of the mission.

The launcher fell in a completely uninhabited area close to the drop zone planned for the Zefiro-9 stage.

Initial investigations, conducted overnight with the available data, indicate that a problem related to the integration of the fourth-stage AVUM nozzle activation system is the most likely cause of the loss of control of the launcher.

** ULA Atlas V puts NRO spysat into orbit with launch from Cape Canaveral. This was the first Atlas V launch using Northrop Grumman GEM 63 rocket motors for the three side boosters.

** Recent launches in China:

*** China aims to launch lunar sample return mission on a Long March 5 rocket before the end of November. The LM-5 provides the largest payload capability in the Chinese LM family. This will be the 6th launch of a LM-5 variant. The vehicle rolled out to the pad at the Wenchang spaceport  in Hainan Province in southern China on Nov. 17th. Rocket to lift Chang’e 5 moved to launch pad – Chinadaily.com.cn

Long March 5 rolls to the launch pad at the Wenchang Space Launch Center in Hainan province on Nov 17, 2020. Credits: Shi Xiao/chinadaily.com.cn

Video from CCTV of the rollout:

*** Long March 3B rocket puts Tiantong 1-02 comm-sat into orbit on Nov.12th.

*** Long March-6 puts 10 Satellogic Aleph-1 Earth observation satellites into orbit after lift off from Taiyuan Satellite Launch Center on Friday, Nov.6.2020.

*** China’s Galactic Energy company sends payload to orbit on first orbital launch of the CERES-1 rocket. The vehicle uses solid-fuel motors in the first 3 stages and the final stage uses a hydrazine based liquid fueled engine. The company is developing the Pallas-1 with all liquid propulsion stages for launch in 2021.

** Indian PSLV sends remote sensing satellite and nine commercial smallsats into orbit. This was the first PSLV launch this year due to postponements caused by the COVID-19 pandemic: PSLV successfully launches EOS-01 and nine customer satellites from Sriharikota – ISRO

Today, India’s Polar Satellite Launch Vehicle, in its fifty first flight (PSLV-C49), successfully launched EOS-01 along with nine international customer satellites from the First Launch Pad of Satish Dhawan Space Centre (SDSC) SHAR, Sriharikota.

PSLV-C49 lifted-off at 1511 Hrs (IST), after a delay of nine minutes because of inclement weather conditions observed during countdown. After 15 minutes and 20 seconds, EOS-01 was successfully injected into its orbit. Subsequently, nine commercial satellites were injected into their intended orbits. After separation, the two solar arrays of EOS-01 were deployed automatically and the ISRO Telemetry Tracking and Command Network at Bengaluru assumed control of the satellite. In the coming days, the satellite will be brought to its final operational configuration.

EOS-01 is an earth observation satellite, intended for applications in agriculture, forestry and disaster management support.

The nine customer satellites from Lithuania (1), Luxembourg (4) and USA(4) were launched under a commercial arrangement with NewSpace India Limited (NSIL).

** Rocket Lab to attempt recovery of first stage booster on launch set for November 20. This will be the first attempt to recover an Electron booster. The company has been carrying out tests of booster return during recent flights.

Rocket Lab:

“Recovering the first stage of a small launch vehicle is uncharted territory. What we’re trying to achieve with Electron is an incredibly difficult and complex challenge, but one we’re willing to pursue to further boost launch cadence and deliver even more frequent launch opportunities to small satellite operators,” says Peter Beck, Rocket Lab’s founder and CEO. “Bringing a whole first stage back intact is the ultimate goal, but success for this mission is really about gaining more data, particularly on the drogue and parachute deployment system. Regardless of the condition the stage comes back in, we’ll learn a great deal from this test and use it to iterate forward for the next attempt.”

Electron’s first stage will undertake the following complex maneuvers on its journey back to Earth:

    • Approximately two and a half minutes after lift-off, at an altitude of around 80 km, Electron’s first and second stages will separate per standard mission procedure. Electron’s second stage will continue into orbit, where the Kick Stage will separate and deploy the satellites.
    • With the engines now shut down on Electron’s first stage, a reaction control system will re-orient the stage 180-degrees to place it on an ideal angle for re-entry, designed to enable it to survive the incredible heat and pressure known as “the wall” during its descent back to Earth.
    • After decelerating to <Mach 2, a drogue parachute will be deployed to increase drag and to stabilize the first stage as it descends.
    • In the final kilometres of descent, a large main parachute will be deployed to further slow the stage and enable a controlled splashdown.
    • A Rocket Lab vessel will rendezvous with the stage after splashdown and retrieve it for transport back to Rocket Lab’s Production Complex for inspection.

If tests with splashdowns are successful, the plan for subsequent flights is to use a helicopter to grab the booster in the air by its parachute and return the booster to the launch site for refurbishment and re-use on future launches.

** Rocket Lab’s first Electron launch from the US is postponed till 2021 due to system certification issues. First Rocket Lab U.S. launch delayed to 2021 – SpaceNews

One reason for the delay, Rocket Lab said, was that it was waiting on NASA to certify the autonomous flight termination system (AFTS) that will be used on the rocket to provide range safety. NASA controls the launch range at the Wallops Flight Facility, where LC-2 is located. “There’s a very long certification process that, quite frankly, we probably underestimated how long it would take,” Peter Beck, chief executive of Rocket Lab, said in an interview in August.

That certification process is ongoing. In a Nov. 10 talk at a Maryland Space Business Roundtable webinar, David Pierce, director of NASA Wallops, mentioned preparations for Rocket Lab’s first launch as part of an overview of the facility’s activities. “We’re really proud of our work with Rocket Lab,” he said. “We’re working really hard to support Rocket Lab with a launch in ’21.”

** Update on Firefly‘s first launch of the Alpha rocket: Firefly closes in on debut flight with rocket delivery to Vandenberg launch site – NASASpaceFlight.com

** Virgin Galactic SpaceShipTwo flight postponed due to pandemic restrictions. including a “stay at home” order from the New Mexico governor for the rest of November. The first rocket powered SS2 flight to high altitude since February 2019 had been set for late this week. It would also be the first space flight for a SS2 from the New Mexico spaceport, which is now VG’s primary operating site.

Before starting commercial flights, VG plans for a second test flight after this one and then a flight with Richard Branson on board in first quarter of 2021.

** Spaceflight Inc expands its space tug options with two additional next-generation orbital transfer vehicles (OTVs). Spaceflight Inc. Unveils Propulsive Orbital Transfer Vehicles to Launch Smallsats to Custom Orbital Destinations – Spaceflight

The company says

it is developing two additional next-generation orbital transfer vehicles (OTVs) that will debut in 2021. Its first, Sherpa-FX, will fly on a fully dedicated rideshare mission with SpaceX, dubbed SXRS-3 by Spaceflight, no earlier than December 2020. The next two ESPA-class space vehicles in the company’s portfolio are designed to provide more orbital diversification, including flexible manifest changes, deployment to multiple altitudes and orbital planes, and rapid launch solutions.

    • Sherpa-FX, the first innovative orbital transfer vehicle to debut, is capable of executing multiple deployments, providing independent and detailed deployment telemetry, and flexible interfaces, all at a low cost. This free flyer separates from a launch vehicle prior to deploying any satellites, with satellite separations initiated by onboard avionics once clear of the launch vehicle. It is quickly configurable and can move from vehicle to vehicle and mission to mission. It includes independent, near real-time, worldwide telemetry via GlobalStar. It will carry 14 spacecraft, including hosted payloads, on the upcoming SXRS-3 mission.
    • Sherpa-LTC features a high thrust, bi-propellant, green propulsion subsystem integrated seamlessly within the available space of the original free flyer. By including this new propulsion technology from Benchmark Space Systems, Sherpa-LTC provides a low cost, rapid orbital transfer for many sizes of small spacecraft. It’s compatible with all launch vehicles Spaceflight currently works with and enables reaching higher orbits quickly through SpaceX Starlink missions and similar flights. It is scheduled to fly the second half of 2021.
    • Sherpa-LTE is a high specific impulse (Isp), Xenon propellant, electric propulsion OTV. It builds on the Sherpa program by incorporating ACE (Apollo Constellation Engine), a low thrust, high efficiency, radiation hardened Hall thruster propulsion system developed by Apollo Fusion, Inc. As ACE systems are able to generate over 6 km/s of delta-V, Sherpa-LTE now has the capability to deliver customers to GEO, Cislunar, or Earth-escape orbits. The Sherpa-LTE provides a low-cost alternative to purchasing full direct-inject launch vehicles and will extend the ability of small launch vehicles that are currently under development to reach beyond low Earth orbit. The Sherpa-LTE is targeted to fly mid-2021.

See also New Propulsive Sherpa OTVs Coming in 2021 – Spaceflight Blog.

** The latest on Launcher Space, a small New York based company developing smallsat rockets with an emphasis on 3D printing of the engines.

** Orbit Fab launching in-space propellant depot system: Fill Them Up… In Space… That’s Orbit Fab’s Plan – SatNews

Orbit Fab has signed an agreement with Spaceflight Inc. to launch the company’s first operational fuel depot to orbit. Tanker 001 Tenzing, which will provide fuel for the fast growing in-orbit servicing industry, is expected to launch aboard a SpaceX Falcon 9 no earlier than in June 2021.

Once launched, Tanker 001 Tenzing will store propellant in sun synchronous orbit, where it will be available to satellite servicing vehicles or other spacecraft that need to replenish fuel supplies. The tanker is one of several payloads to launch on a Spaceflight Sherpa orbital transfer vehicle, which is capable of executing multiple deployments. Spaceflight’s first OTV, Sherpa-FX, is scheduled to debut no earlier than December 2020 on a SpaceX rideshare mission and provides independent and detailed deployment telemetry, and flexible interfaces, all at a low cost.

** Briefs:

==================

Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Strides and Views, Rocket Lab, Bernard Kutter, RIP
Vol. 15, No. 6, September 18, 2020

Space Frontier Foundation Award for NewSpace Journalism

==================

** SpaceX:

Following the successful launch of the Crew Dragon to the ISS (see top item), SpaceX has several more launches coming up in the next few weeks, including two set for this Saturday at opposite coasts of the country:

*** Launch of NASA’s Sentinel-1 earth observation satellite set for Nov. 21st launch from Vandenberg AFB. Static fire test of Falcon 9 booster completed:

*** Another Starlink constellation launch is set for the evening of Nov. 21st from Cape Canaveral. For the first time, a F9 booster will boost a payload for the 7th time: B1049’s Flight History. And the first time a F9 first stage.

Reviews of Starlink broadband Internet services by beta test users are mostly positive so far. SpaceX needs Starlink to be popular and profitable to sustain future programs:

*** Big payment for a NRO launch covers other items beside the rocket: SpaceX explains why the U.S. Space Force is paying $316 million for a single launch – SpaceNews

The $316 million contract [to launch a National Reconnaissance Office satellite in fiscal year 2022] was the first awarded to SpaceX under the National Security Space Launch Phase 2 launch service procurement. The other provider selected in this program, United Launch Alliance, was awarded $337 million to launch two missions comparable to the one awarded to SpaceX.

This raised eyebrows because SpaceX’s previous national security launch bids were priced much lower than ULA’s. A recent Falcon Heavy launch contract SpaceX won from NASA, for example, was $117 million. In the first Phase 2 award, ULA is launching two missions almost for the price of one SpaceX mission.

But [SpaceX President and Chief Operating Officer  Gwynne] Shotwell insisted the company’s launch prices are not going up. SpaceX is however charging the government for the cost of an extended payload fairing, upgrades to the company’s West Coast launch pad at Vandenberg Air Force in California, and a vertical integration facility required for NRO missions.

*** Latest on commercial launch of a private citizens crew for Axiom in late 2021: Israeli Eytan Stibbe second member of SpaceX private flight for Axiom – CNBC

    • Former Israeli fighter pilot Eytan Stibbe is the second member of the all-private crew that SpaceX is scheduled to launch late next year for Axiom Space, the company confirmed to CNBC on Monday.
    • President of Israel Reuven Rivlin made the announcement shortly after SpaceX launched its Crew-1 mission for NASA on Sunday evening.
    • Astronaut Michael Lopez-Alegria, who previously worked for NASA and flew to space four times, will be the mission commander for AX-1, with Stibbe set to serve as a mission specialist.
    • Axiom has yet to name the remaining two members of the AX-1 mission

**** Starship

**** A high altitude flight of the prototype Starship SN8 was delayed when an engine failed during a test firing. The test aimed to emulate the situation during landing when the engines are fed with propellants from the spherical reserve tanks in the nosecone and in the main oxygen tank. The failure of the engine led to the failure of the pneumatic system that controls the venting of the tanks. The header tank might have blown off the top of the rocket but a burst valve gave way and saved the day.

Elon Musk commented about what happened:

Fixes planned:

See also Starship SN8 hoping for speedy return to testing as additional vehicles line up – NASASpaceFlight.com.

And Scott Manley talks in this video posted soon after the test and before Elon’s comments but he still provides some interesting  info about the propulsion system:  Nov.13Starship Test Destroys Raptor Engine, But Burst Disc Saves Rest Of Vehicle

**** Meanwhile, work continues on multiple prototypes from SN9 up through SN15.

**** Elon expects costs to drop dramatically when there are lots of Starships flying often:

**** A Sampling of recent videos from Boca Chica

***** Nov.13: SpaceX Boca Chica – SN8 Static Fire #3 and Pneumatic Anomaly – NASASpaceflight – YouTube

SN8 fired up its engines for the third time, but suffered a loss of pneumatics and was unable to drain the LOX header tank in the nosecone- luckily a burst disk prevented a potentially catastrophic overpressure event. Some liquid that looked like molten metal could be seen dripping from Raptor after firing. Also included, a comparison of all 3 SN8 static fires so far. Video and Pictures from Mary (@BocaChicaGal). Edited by Jack Beyer (@TheJackBeyer)

***** Nov.13: https://youtu.be/PwBoepMtjoY – RGV Aerial Photography

***** Nov.16 : SpaceX Boca Chica – Raptor SN42 greets Starship SN8 – Brand new SN46 arrives – NASASpaceflight – YouTube

Meanwhile, in Boca Chica! New Raptor SN42 paid a visit to Starship SN8, but wasn’t installed. Then SN46(!) turned up in the RaptorVan, sporting a pumpkin! (Fresh from Halloween testing at McGregor?) Video and Pictures from Mary (@BocaChicaGal). Edited by Jack Beyer (@TheJackBeyer)

***** Nov.17 : Boca Chica – SN9 Transporter Testing – NASASpaceflight – YouTube

SN9 was tested with the newly assembled extra wide Self Propelled Modular Transporter, work on SN8 continued, and a nosecone barrel section was worked on inside the nosecone fabrication tent. Video and Pictures from Mary (@BocaChicaGal). Edited by Jack Beyer (@TheJackBeyer)

***** Nov. 17: Waiting for SN8 and a Look Back in Time – StarshipBocaChica/Maria Pointer – YouTube

You will see in this video that I knew early on that my view (and yours) was going to be different forever and just took pictures of everything. It was a responsibility to document SpaceX progress before we had to move and I thought that was the end of BocaChica Maria. Thankfully as we sold, SpaceX asked me to continue documenting with perks because we cooperated with the buyout. I was keeping something familiar and being a SpaceX influencer.

**** Other Starship and space transport reports:

**** Nov.17: SpaceX Starship Engine: Problem solved! & Crew Dragon Crew-1 Flight Summary – What about it!?

Today amongst other things I’ll explain to you, what SpaceX is doing to fix the engine problems on Starship Serial Number 8 and I’ll give you a detailed launch summary for the SpaceX and NASA Crew-1 Dragon launch.

**** Nov.14: Super Heavy’s Super Precision, Starship Updates and the NASA/SpaceX Crew-1 Launch – Marcus House

This is quite the week for SpaceX. We, of course, have all the amazing Starship Updates for the week, including some interesting talk on Super Heavy’s Super Precision capability. On top of that we have the NASA/SpaceX Crew-1 Launch. This is going to be quite the milestone for SpaceX. The static fire is done, and the final preparations are underway. On top of that, we just witnessed the launch of ULA’s NROL-101 mission.

=== Amazon Ad ===

Xtronaut:
The Game of Solar System Exploration

=====

=== Space Art from C. Sergent Lindsey ===

Sweatshirt imprinted with “SpaceX Delivers the Goods” by C Sergent Lindsey. Available at Fine Art America.

Space transport roundup – Nov.3.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** ULA Atlas V launch of the NROL-101 spysat for the National Reconnaissance Office (NRO) is currently set for Wednesday, Nov. 4 at 5:38 pm  EST (2238 GMT) from Cape Canaveral. A roll-out on Monday was aborted and the vehicle moved back into the Vertical Integration Facility. ULA said the vehicle “experienced an upper payload environmental control system flow rate reduction” and they decided to postpone the launch to investigate the issue.

** Rocket Lab‘s Electron puts 10 satellites into orbit for Canon and Planet. Rocket Lab Successfully Launches 15th Mission, Deploys Satellites for Planet, Canon Electronics Inc. | Rocket Lab

The payloads on ‘In Focus’ included the latest flock of Planet’s Earth-imaging SuperDove small satellites, each integrated with and deployed from Rocket Lab’s Maxwell satellite dispensers. Flock 4e’ bolsters Planet’s constellation of Earth-observation satellites already on orbit providing medium-resolution global coverage and near-daily revisit. Canon Electronic’s mission objective with their CE-SAT-IIB microsatellite is to demonstrate the company’s Earth-imaging capability with a middle-size telescope equipped with an ultra-high sensitivity camera to take night images of the Earth and small size telescopes suitable for CubeSat use.

See also Rocket Lab successfully launches satellites for Planet and Canon – Spaceflight Now.

*** Rocket Lab Kick Stage demonstrates a new trick: Rocket Lab demonstrates flexible in-space transportation with new Kick Stage maneuver | Rocket Lab

*** Next Electron launch set for Nov.16th : Rocket Lab to Launch Most Diverse Mission Yet | Rocket Lab

    • The mission will deploy 30 satellites to unique orbits using the Electron launch vehicle’s Kick Stage space tug
    • The satellites will enable internet from space, test new methods of deorbiting space debris, and enable research into predicting earthquakes
    • The launch will also feature a 3D printed mass simulator for Valve’s Gabe Newell to raise funds for Starship Children’s Hospital

** Russian launches new type of GLONASS navigation satellite on a Soyuz 2-1b/Fregat rocket: Russia launches Soyuz with next-generation navigation satellite – NASASpaceFlight.com

GLONASS is Russia’s global satellite navigation system, analogous to the US Global Positioning System (GPS) and European Galileo constellations; like its counterparts, it is available for both military and civilian use.

Sunday’s launch carried a third-generation Uragan-K satellite, Uragan-K No.15L, which is the third Uragan-K to be launched. This class of satellite was originally intended to consist of two prototype satellites for on-orbit testing in an operational environment prior to the entry into service of the operational Uragan-K2 series. Delays to the Uragan-K2 project have led to Russia ordering 11 additional Uragan-K satellites, including No.15L – which will be pressed into service.

The Uragan-K satellites are constructed by ISS Reshetnev and are based around the Ekspress-1000K satellite bus. The 935 kilogram (2,061 pound) spacecraft have design lives of at least 10 years.

** Chinese Long March-2C rocket launches 3 reconnaissance satellites into orbit from the Xichang Satellite Launch Center in southwest China’s Sichuan Province: China launches new Yaogan-30 group of military satellites – NASASpaceFlight.com

China launched a new group of triplet satellites for the Chuangxin-5 (CX-5) constellation on Monday. Launched under the name Yaogan Weixing-30 Group-7, the three satellites were orbited by a Chang Zheng-2C launch vehicle from the LC-3 Launch Complex of the Xichang Satellite Launch Center, with launch taking place at 15:19 UTC.

Like the previous missions on the series, this mission is once again classed as involving new remote sensing birds that will be used to “conduct electromagnetic probes and other experiments.”

As was the case in previous launches of the Yaogan Weixing series, analysts believe this class of satellites is used for military purposes, in particular forming a high-revisit smallsat constellation for signal intelligence missions or imaging activities.

See also China launches new remote-sensing satellites – CGTN.

** ABL Space Systems progresses towards first launch of RS1 rocket delivery system in 2021: ABL Space Systems performs integrated stage test of the RS1 launch vehicle – ABL

ABL Space Systems has completed integrated stage testing of the RS1 small satellite launch vehicle. Testing was performed on the RS1 second stage with the in-house designed E2 liquid rocket engine at the Area 1-56 test site on Edwards Air Force Base. Critical aspects the campaign included handling of the propellant tanks, operating pressurant management systems, and refining the stage arming and engine startup sequences, all of which were accomplished successfully. This test campaign builds on the successes of eighteen months of extensive component, engine and stage testing.

ABL manufactures engines and stages in state-of-the-art facilities in El Segundo, California. By staying highly verticalized and focusing on low-cost, scalable manufacturing processes, ABL delivers industry leading capability and pricing to the small satellite community. RS1 can deliver one metric ton to sun synchronous orbit, 400 kilograms to geosynchronous transfer orbit, and 250kg to lunar injection orbit.

RS1 Integrated Stage Test at Edwards Air Force Base. Credits ABL Space Systems

“Simplicity is key,” said Harry O’Hanley, Founder and CEO of ABL. “Our company is just over three years old. Yet, we’ve moved markedly faster and been more capital efficient than others because we avoid exotic, unproven architectures and manufacturing processes. Unless an innovation adds measurable value to our customer, we do not pursue it.”

ABL supports a variety of customers throughout the defense, civil and commercial sectors, with over $44 million in announced contracts and a deep customer backlog. RS1 is best in class in all dimensions that launch customers value: price – as low as $9,000/kg; capability – the highest lift capacity throughout the cislunar volume; reliability – only proven technologies in the system; and cadence – existing production lines can produce a launch vehicle in under thirty days.

ABL will continue performing stage test operations at Edwards Air Force Base in the coming weeks to accumulate additional run time on the engine and stage. The launch vehicle system will undergo a series of stress tests to demonstrate performance in a variety of different flight conditions. RS1 is scheduled for an initial launch in the first quarter of 2021 from Vandenberg Air Force Base, where ABL has received a Right of Entry for LC-576E from the 30th Space Wing.

See also ABL Space Systems tests launch vehicle stage – SpaceNews.

** Protolaunch optimizing rocket propulsion systems for small payload transports.

Protolaunch has taken a bottom-up design philosophy to propulsion development, designing specifically for small payloads from the outset. Based on work conducted at the University of Cambridge, Protolaunch has developed a novel thermodynamic cycle that eliminates the need for any turbomachinery while enabling the use of cleaner biofuels, and simplifying propellant handling and storage. 

Protolaunch technology leverages thermodynamic optimisations to eliminate the need for complex pumps & turbmachinery and reduce manufacturing complexity.

Our propulsion technology presents a number of strategic advantages over turbomachinery or high-pressure blow-down. Our technology is the key enabler for a dedicated microlauncher and will facilitate a future of dedicated launches for small payloads.  

** Stratolaunch receives first Ursa  Major rocket engine for Talon-A reusable hypersonic vehicle:

Ursa Majors Technologies specializes in smaller class engines that use complex staged combustion cycle designs to achieve high efficiencies and performance.

Here are some views of Stratolaunch’s Talon-A uncrewed vehicle, which is now under construction:

According to the company’s website:

Talon-A is a fully reusable, autonomous, liquid rocket-powered Mach 6-class hypersonic vehicle with a length of 28 feet (8.5 m), wingspan of 11.3 feet (3.4 m), and a launch weight of approximately 6,000 pounds (2,722 Kg). The Talon-A will conduct over 1-minute of hypersonic flight testing, and glide back for an autonomous, horizontal landing on a conventional runway. The vehicle will also be capable of autonomous take-off, under its own power, via a conventional runway.

** Virgin Galactic nears first high altitude flight since moving to New Mexico spaceport: Virgin Galactic’s spaceflight test on track to launch this fall – CNBC

    • Space tourism venture Virgin Galactic on Wednesday confirmed to CNBC that it remains on track to conduct its next test spaceflight in the coming weeks.
    • “We expect our first spaceflight from Spaceport America to occur later this fall and we are pleased to confirm that we are still on track to meet this timeframe,” the company said.
    • This will be the first of two spaceflights that the space tourism company has planned to complete testing of its SpaceShipTwo spacecraft system.

*** Update on preparations for the upcoming SpaceShipTwo flight to suborbital space from Spaceport America in New Mexico: Virgin Galactic Flight Test Program Update: Spaceflight from New Mexico Progress – Virgin Galactic

…Our next spaceflight is set to deliver that first taste of human spaceflight for the state and, having completed two spaceflights, we as a team know how special these historic moments can be.

If all goes to plan, not only will this flight be the first human spaceflight to depart from New Mexico, it will also mark Virgin Galactic Pilot CJ Sturckow’s sixth time in space, and will see him become the first person to have flown to space from three different U.S. States, an extraordinary professional achievement. I too have had a long relationship with space. At NASA I worked numerous Space Shuttle missions and oversaw the launch of 12 flights, and I have managed another two during my time at Virgin Galactic. This mission will mark number 15! One thing is for certain, the feeling you get from witnessing your team run a safe and successful mission, followed by greeting the astronauts on their return to earth, never ceases to thrill me.

One thing to note about this flight is that once we are in space, we will be flying slightly differently than how we plan to fly with our Future Astronauts. This is because we’ll have three NASA payloads in the cabin, flown through NASA’s Flight Opportunities Program. Unlike our Future Astronauts, these payloads aren’t on board for the view, so instead of stopping the vehicle pitch in the inverted position for the best views of Earth, we’ll pitch the vehicle 270 degrees following boost to get to the entry attitude as soon as possible. This maneuver will maximize time for the payloads to remain in data-collection mode. Carrying these payloads not only makes this test flight a revenue-generating one, but also demonstrates our commitment to facilitating regular, accessible space-based scientific research.

The payloads will be placed in the spaceship cabin, where we have other test objectives planned. While we have flown passenger seats on previous flights, this will be the first time in flight where we actively recline the seats once in space, which will create extra room when Future Astronauts are floating in zero gravity. For this first test of the seat recline in a space environment, we will have instrumented test mannequins strapped in.

Since our last flight to space, we’ve refined and upgraded a few other elements on the spaceship. We’ve extensively tested these changes on the ground and in our previous two flights from Spaceport America, and we are now ready to test them on a rocket-powered flight. We’ve made upgrades to the horizontal stabilizers (known as H-Stabs), which are the flight control surfaces on the outboard of the feather booms. We’ve also made improvements to the flight control system that commands these Hstabs to move in response to pilot inputs. We’ve already flown these improvements on our last two glide flights, and they performed well. Together these mods will enhance the performance of the spaceship and support long-term commercial service.

*** WhiteKnightTwo flew twice today: Virgin Galactic Flight Test Program Update – SpaceShipTwo Prepares For First Spaceflight From New Mexico – Virgin Galactic

“VMS Eve has the ability to test pilot proficiency by simulating the glide and approach-to-land phase of flight for SpaceShipTwo pilots.  The cockpit structure of Eve is almost identical to that of Unity: the same pilot seats and windows, as well as very similar flight controls and instruments.  This, coupled with the fact that with Eve’s landing gear down, and one set of speed brakes out, it descends on the same flight path angle as SpaceShipTwo,  means that the crew can practice the identical approach and landing pattern to the one they will fly in Unity – with much of the same information displays, and the same view out the window.  This makes Eve a very valuable in-flight simulator for the spaceship’s final approach and landing phases.’’

*** VG also expands its corps of SS2/WK2 pilots: Virgin Galactic Hires Two New Pilots into its Pilot Corps – Virgin Galactic.

Virgin Galactic today announced the appointment of two new pilots into its Pilot Corps, bringing the total number of pilots to eight.

Jameel Janjua and Patrick Moran will be based at Spaceport America, New Mexico, and join the Virgin Galactic team as preparations for commercial service continue.

Both will embark on an extensive training program before flying SpaceShipTwo. In addition to the Spaceship, the pilots will also train to fly the carrier aircraft, VMS Eve. VMS Eve provides a way for the pilots to fly simulated parts of the SpaceShipTwo flight trajectory, gaining valuable hands-on training. Other assignments for the pilots will include flying other company support aircraft, working mission control, flight planning, and support various detailed engineering and project roles across the company.

** Firefly Aerospace raising public profile as it nears first launch: Here are four recent items of interest involving the company:

*** Firefly counting down to an Alpha launch by end of the year: Firefly Aerospace aims for first rocket launch in late December – CNBC

    • Firefly Aerospace currently plans for its maiden Alpha rocket launch to happen as early as Dec. 22, co-founder and CEO Tom Markusic told CNBC.
    • Standing at 95 feet tall, Firefly’s Alpha rocket is designed to launch as much as 1,000 kilograms of payload to low Earth orbit – at a price of $15 million per launch.
    • “I think it’s very reasonable for us to expect complete success on the first launch,” Markusic said.

*** Firefly signs up new customers : Firefly Aerospace Announces New Customer Agreements, Completes Stage 1 Acceptance Testing Ahead of First Alpha Launch – Firefly

Firefly has signed a Launch Services Agreement (LSA) with Spire Global (Spire) for the launch of Lemur spacecraft on the Alpha launch vehicle. The LSA will provide for the launch of Spire spacecraft on multiple Alpha missions over the contract period. Firefly has also executed an LSA with Geometric Space Corporation for the full payload capacity of an Alpha launch vehicle.

In addition to the customer agreements, Firefly also provided information on recently achieved Alpha milestones. The Alpha Flight 1 Stage 1 performed a 35 second static fire, including a full suite of thrust vector control maneuvers. Subsequently, a 15 second final trim test was performed, and the stage will now ship to Firefly’s launch complex at Vandenberg Air Force Base (VAFB).

Concurrently, the Alpha Flight 1 payload fairing successfully completed a separation test. The payload fairing separation system was designed and manufactured by Firefly. The system is operationally recyclable, allowing for multiple tests of the flight unit.

Firefly is also nearing completion of its Launch Control Center, Integration Hangar, and launch pad, including assembly of the Transporter Erector Launcher (TEL) at historic Space Launch Complex 2 West (SLC-2W) at VAFB. Firefly’s TEL, built by Firefly’s design and fabrication teams in Texas and California, is being integrated and will soon commence ground system activation.

*** Firefly tests composite fairing separation system:

***  Firefly installing high through-put automated composite rocket assembly system: Firefly Aerospace to Automate Composite Rocket Production with Ingersoll Machine Tools – Firefly. Ingersol’s Automated Fiber Placement (AFP) Mongoose Hybrid systems will enable Firefly to  “produce its all-composite Alpha rocket airframe in as little as fourteen days”.

Firefly will install the first of two planned AFP systems in May 2021 at its manufacturing and test facility in Briggs, Texas, where Alpha will be requalified using AFP manufacturing processes. Firefly’s new Florida Space Coast factory and launch site at Cape Canaveral will house the second automated assembly line beginning 2022 and will ultimately be capable of producing an estimated 24 Alpha rockets per year, with the Briggs plant switching to automated developmental builds of the larger Beta launch vehicle.

Firefly’s new automated rocket factories will produce a broad range of benefits, including a 30-50% reduction in composite materials waste, increased repeatability, reduced touch labor and build times, and a tailored and optimized structure that further reduces weight and overall costs.

More about Firefly’s use of composites: The Alpha launch vehicle: Designing performance in, cost out – CompositesWorld.com.

** ULA and Vulcan-Centaur rocket updateTory Bruno, CEO of ULA, was a guest on The Space Show on Friday,Oct.23.2020 and discussed “many listener email questions and phone calls on a variety of ULA related topics”.

Eric Berger points to some interesting comments by Bruno regarding Blue Origin‘s BE-4 engine, which will power the first stage of the new ULA Vulcan- Centaur rocket: With turbopump issues “sorted out,” BE-4 rocket engine moves into production | Ars Technica

Blue Origin appears to have solved some development issues related to the turbopumps in its powerful BE-4 rocket engine.

United Launch Alliance chief executive Tory Bruno said Friday that the problem was “sorted out,” and that the full-scale, flight-configured BE-4 engine is now accumulating a lot of time on the test stand. Bruno made his comments about one hour into The Space Show with David Livingston.

Bruno also indicated that they are continuing with plans to recover the first stage engine pod in a later model of the Vulcan.

Development of the  Centaur V upper stage is apparently going well:

He also expressed excitement about the performance of Vulcan’s new Centaur V upper stage. The current Centaur III vehicle uses a single RL-10, but the new Centaur V will use a pair of uprated RL-10s. The new upper stage should provide more than twice as much energy thanks to its low mass and high performance. “I’m really excited about that,” Bruno said. “It’s a pretty incredible upper stage.”

** The latest from Launcher:

** Update on Reaction Engines progress in development of the Skylon SSTO vehicle and the SABRE propulsion system. The presentation was given at the recent IAC 2020 symposium (Item via Rocketeers blog) :

Simon Feast, Future SABRE Studies Lead, will be delivering a symposium keynote lecture on the Development Status of SABRE, as part of the Space Propulsion symposium on Hypersonic Air-breathing and Combined Cycle Propulsion, and Hypersonic Vehicles – In this pre-recorded talk, he discussed the SABRE design and engineering challenges as well as the technical strategy behind the development programme. IAC-20-C4-7-1 The Synergetic Air-Breathing Rocket Engine (SABRE) – Development Status Update

See also Air-breathing rocket engines: the future of space flight – Physics World.

** Masten to build Xogdor high altitude suborbital vehicle with NASA funding: Masten Space Systems Awarded Two NASA Tipping Point Contracts — Masten Space Systems

NASA and Masten Space Systems announced that the Space Technology Mission Directorate has chosen Masten for two Tipping Point awards as part of the agency’s Artemis mission to return to the Moon. The first award is for Masten’s Metal Oxidation Warming System (MOWS) which is being developed in partnership with Penn State as a chemical heating solution to help spacecraft survive in sunlight-deprived lunar environments. The second award will drive completion of Masten’s state-of-the-art aerospace testbed, named Xogdor, to provide the industry an updated flight test analog for critical Artemis technologies.

Masten will mature its Xogdor flight vehicle to operational service to provide an updated system for testing aerospace technologies in a relevant flight environment. Over this three year project, Masten will complete the development and flight testing of a Xogdor vehicle. The defined effort will support risk reduction of technologies through flight testing in pursuit of NASA’s Moon-to-Mars campaign with a focus on building an EDL (Entry, Descent, Landing) test capability for near-term lunar missions. Xogdor will be the sixth vehicle in Masten’s line of reusable rockets, which have had more than 600 successful VTVL (Vertical Takeoff Vertical Landing) flights over 15 years of heritage.

“Xogdor is poised to become the industry’s state-of-the-art testing analog with performance capabilities far exceeding those of currently available EDL testbeds,” said Masten CTO, Dave Masten. “Through this Masten-NASA partnership, Xogdor will be available to test critical Artemis technologies, including hazard detection instruments, precision landing avionics, innovative flight software, Plume Surface Interaction (PSI) experiments, and other critical EDL experiments as early as 2023.”

Masten Space mentioned Xogdor as far back as 2011 but has not had sufficient funding till now to build it.

A sketch of the Xogdor vertical-takeoff-and-landing (VTOL) suborbital space vehicle. Credits: Masten-Space presentation from 2011 (pdf)

** UK-based Skyrora tests booster:

In just 5 days, the Skyrora team completed a full static fire test of the Skylark L rocket, on a mobile launch complex built from scratch. The team also managed to carry out tests leading up to the ground rocket test during this time, to ensure maximum safety precautions were applied.

An animation of Skyrora’s Skylark XL launch system:

** USNC-Tech provides NASA a nuclear propulsion design based on the company’s encapsulated low-enriched Uranium fuel technology: Ultra Safe Nuclear Technologies Delivers Advanced Nuclear Thermal Propulsion Design To NASA – USNC

Ultra Safe Nuclear Technologies (USNC-Tech) has delivered a design concept to NASA as part of a study on nuclear thermal propulsion (NTP) flight demonstration. NTP technology provides unprecedented high-impulse thrust performance for deep space missions such as crewed missions to the moon and Mars. The NASA-sponsored study, managed by Analytical Mechanics Associates (AMA), explored NTP concepts and designs enabling deep space travel.

“We want to lead the effort to open new frontiers in space, and do it quickly and safely,” said Dr. Michael Eades, principal engineer at USNC-Tech. “Our engine maximizes the use of proven technology, eliminates failure modes of previous NTP concepts, and has a specific impulse more than twice that of chemical systems.”

Advancements in nuclear fuel design and passive safety measures pioneered by Ultra Safe Nuclear (USNC, USNC-Tech’s parent company) with Fully Ceramic Micro-encapsulated (FCM™) fuel enabled USNC-Tech to create a novel NTP concept with specialized performance capabilities. The enhanced safety characteristics and design flexibility of the USNC-Tech concept is a critical step forward in achieving extensibility of NTP systems to deep-space missions.

The USNC-Tech NTP concept uses a specialized variation of USNC’s FCM™ fuel, featuring high-assay low-enriched Uranium (HALEU) ZrC-encapsulated fuel particles. This variation enables high-temperature operation while maintaining the integrity of the fuel. FCM™ fuel is extremely rugged, enabling a new family of inherently safe space-optimized reactor designs that ensure astronaut safety and environmental protection. Using low quantities of HALEU, this unique NTP concept delivers high thrust and specific impulse previously only achievable through high-enriched uranium. Furthermore, FCM™ fuel leverages pre-existing supply chains and manufacturing facilities used by terrestrial nuclear reactor developers, reducing production risks and enabling sustainable industry involvement.

In an NTP system, exceptionally high levels of thrust are achieved by passing propellant through a specialized reactor core, reducing interplanetary transfer durations. Additionally, NTP systems achieve expanded payload mass capabilities due to their two-fold increase in specific impulse compared with chemical propulsion systems. As a result, NTP offers an entirely new mode of in-space transportation, enabling rapid movement of high-mass spacecraft architectures to deep space destinations (current NTP designs could deliver a crew to Mars in as few as three months) and a new, highly agile degree of cislunar mobility. If designed with commercial sustainability in mind, modern NTP systems can offer these benefits to commercial space entities in addition to government agencies like NASA and the DOD, enabling new business opportunities such as rapid orbital logistics services.

** How Can Soyuz Reach The Space Station In Only 3 Hours?Scott Manley

This week Soyuz MS17 set a space station record by going from launch to docking with the International Space Station in only 3 hours and 3 minutes, half the time that Soyuz used to take, and much faster than the day long approaches used by US spacecraft. For Soyuz is has much shorter on orbit endurance compared to US spacecraft and is much less spacious than the US equivalents, incentivizing fast rendezvous trajectories.

** Some recent Future In-Space Operations (FISO) seminars dealing with space transportation:

** Presentations given at the recent Advanced Propulsion Workshop 2020, sponsored by the Space Studies Institute,  are now available on video. The presentations included updates from Jim Woodward and Hal Fearn on the Woodward Mach Drive. Their talks focused on the nuts and bolts technicalities of their latest device, which they say is giving much higher thrust than previous versions. They are working with some other teams on replicating the performance of this new design.

Here is a more general talk from Sonny White, previously of NASA and now at the Limitless Space Institute, on advance propulsion concepts:

** Briefs:

==================

Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Strides and Views, Rocket Lab, Bernard Kutter, RIP
Vol. 15, No. 6, September 18, 2020

Space Frontier Foundation Award for NewSpace Journalism

==================

** SpaceX:

*** As many as nine Falcon 9 missions could take place over the next two months. The first is the launch of the Air Force’s GPS 3 SV04 satellite set for liftoff from the SLC-40  pad at Cape Canaveral Air Force Station on November 5th during the window 6:24-6:39 pm EST) p.m. EST (2324-2339 GMT). The booster passed a static firing test on the pad on Oct. 31st:

*** Merlin engine problem traced to improper cleaning of coating used during manufacture of a relief valve. GPS launch and Crew missions can now proceed.

*** First operational Crew Dragon mission to the ISS now set for November 14th:

** Falcon 9 launch of the NASA Sentinel-6 spacecraft, which will measure the height of the ocean, it was set for November 10th from Vandenberg AFB, on the coast of California but may now slip a few days.

A simulation of the Sentinel 6 launch on the Falcon 9:

*** The recent Starlink 14 launch became the 100th successful SpaceX rocket mission:

On Saturday, October 24, 2020, SpaceX completed its 100th successful flight since Falcon 1 first flew to orbit in 2008. Over the course of these flights, SpaceX landed Falcon’s first stage booster 63 times and re-flew boosters 45 times.

*** The Starlink broadband Internet constellation is taking an increasingly important role in SpaceX launch vehicle operations and future development.

  • The majority of Falcon 9 launches are now devoted to delivering Starlinks to orbit.
  • Reuse of Falcon 9 boosters is key both to the rapid launch rate of Starlink satellites and the affordability of orbiting so many spacecraft.
  • The launch of nearly 900 operational satellites in a year has allowed SpaceX already to begin offering a “beta” Internet service to the public to a limited geographic area.
  • The level of initial customer demand will help indicate whether the service will be a profitable enterprise and fulfill the company’s goal of helping to fund the development of Starships and the establishment of a permanent settlement on Mars.
  • At the current launch rate, the constellation by the middle of next year could reach the minimum size – 1,440 satellites in 72 orbital planes of 20 satellites each – needed to provide global coverage.
  • Starships will be needed for affordable orbital installation of the ~30k satellites that the company says is required to provide high performance broadband services globally to a large number of users.

More Starlink items:

*** Starship

Since the last report, a lot has happened at Boca Chica, as usual:

  • Oct.20: Successful static firing of three Raptor engines attached to the SN8 prototype Starship. More about this below.
  • Oct.23: Starship SN8 got a nosecone and finally looked like a real spaceship: The nosecone, with fins attached  for air braking on return from high altitude, was moved from the assembly area to the launch site and then a huge crane lifted and set it carefully atop the barrel section. Immediately multiple workers standing in platforms attached to the long high arms of boom lifts (also known as cherry-pickers) attending to the seam.  See videos below.
  • Multiple Starships and the first Super Heavy booster are  under construction. Here is a nice display of components seen by observers watching the Boca Chica site:

Upcoming activities:

Here is an infographic describing the test flight of the SN8 prototype:

Elon in a Tweet responds to a query regarding a webcast of the SN8 flight:

Sure, although it might be quite a short livestream! Lot can go wrong, but we’ll provide video, warts & all. You will see every frame that we do.

**** An extensive review of the history of the design and development of the Starship: SpaceX Starship: The Continued Evolution of the Big Falcon Rocket – NASASpaceFlight.com

**** Gwynne Shotwell predicts a wide array of applications for the Starship system including space debris collections.

**** Elon Musk gave an update on the Starship program during an online interview for the Mars Society convention last week:

lon Musk’s comments with questions relayed from the Mars Society Membership by Dr. Robert Zubrin, James L. Burk, and Carie Fay. Following Elon’s 30 min time, Dr. Zubrin took additional questions. This special event was part of the 2020 Mars Society Virtual Convention from October 14-18, 2020. For more details on this event and The Mars Society, visit http://www.marssociety.org

According to his comments on Twitter, Musk may release a more detailed written update soon.

**** Estimates of launch cost for Starships:

**** Three Raptor engines test fired together for another first in Starship development: For the first time, a Starship prototype roars to life with three engines | Ars Technica

Early Tuesday, October 20th, three Raptor engines on the SN8 Starship prototype fired together for the first time: SpaceX Boca Chica – SN8 First Ever 3 Raptor Static FireNASASpaceflight – YouTube

SN8 fires up its three Raptor engines for the first time ever in this static fire test. Also included is the preburner test a few hours before. […] SN8 on Pad A Video and Pictures from Mary (@BocaChicaGal). Edited by Jack Beyer (@TheJackBeyer)

***** Oct.23: SpaceX Boca Chica – Starship SN8 nosecone mate – Raptors on the move – NASASpaceflight – YouTube

A long highlight video of Thursday’s historic event of Starship SN8 nosecone stacking and the surprise double Raptor merry-go-round. Video and Pictures from Mary (@BocaChicaGal). Edited by Jack Bayer (@thejackbeyer) and Nic Gautschi (@NGautschi).

***** Oct.26: SpaceX Boca Chica – Starship Factory Drive-Thru – New Flaps Delivered and New Nosecone Moved Outside – NASASpaceflight – YouTube

Mary provides us with one of her classic driving tours of the SpaceX Boca Chica complex, new body flaps were delivered, and a new nosecone was rolled out of the production tent. Video and Pictures from Mary (@BocaChicaGal). Edited by Nic Gautschi (@NGautschi).

**** Oct.30: SpaceX Boca Chica – As Starship SN8 waits, SPMTs convoy arrives, Orbital Pad work – NASASpaceflight – YouTube

While Starship SN8 has to wait a few more days until the second Static Fire test campaign, four additional SPMTs arrived, along with large concrete blocks for the Orbital Launch Pad. The final structural test nosecone met its demise and heck, there’s a lot more….there always is at SpaceX Boca Chica. Video and Pictures from Mary (@BocaChicaGal). Edited by Jack Beyer (@TheJackBeyer)

**** Nov.1: High Bay Gets Busy Under a Halloween Blue Moon – StarshipBocaChica/Maria Pointer – YouTube

**** Nov.2: SpaceX Boca Chica – Starship SN10 stacked as SN9 receives aft flaps  – NASASpaceflight – YouTube

While Starship SN8 waits for pre-launch testing, SN9 received her aft flaps and SN10 was stacked! That’s three new and stacked Starships for those keeping score. The SPMT squad also rolled out to the launch site. Video and Pictures from Mary (@BocaChicaGal). Edited by Theo Ripper (@TheoRipper).

**** Other Starship and space transport reports:

**** Oct.31: SpaceX Starship – Final preparation for SN8 flight – Space news update – Marcus House

The progress at BocaChica continues with SpaceX Starship SN8 going through some more testing prior to its 15-kilometer flight that we are thinking will be occurring in the upcoming week. These are the final preparation for SN8 flight. We have an overall Space news update with Starlink’s beta looks to have expanded to the public so we will talk about that along with SpaceX’s incredible 100 flight milestone. We’ve got a new Crew 1 launch date set which is exciting. Interesting news with confirmation that there are traces of water on sunlit areas of the moon. We’ll dive into that. And yes, yet another beautiful flight by RocketLabs launching Electron mid-week.

**** Nov.3: SpaceX Starship orbital Starlink flight from ignition to landing! – What about it!?

=== Amazon Ad ===

America’s New Destiny in Space

Space transport roundup – Oct.14.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** A Soyuz launched a new ISS crew early this morning US time and the spacecraft reached the ISS just three hours later. A few hours later the crew, including NASA astronaut Kate Rubins, and cosmonauts Sergey Ryzhikov (Soyuz commander) and Sergey Kud-Sverchkov (flight engineer), entered the station. They expand the ISS contingent to a total of six.

** Blue Origin flew a New Shepard vehicle on Tuesday Oct. 13th above 100 km for the 13th time, the 7th time for this particular vehicle. The flight had been postponed several times from the original target date of September 24th by a series of weather and technical issues. New Shepard Successfully Completes Mission with NASA Precision Lunar Landing Technology Onboard – Blue Origin

There were 12 payloads onboard including the Deorbit, Descent, and Landing Sensor Demonstration under the NASA Tipping Point partnership. The lunar landing sensor demo was the first payload to be mounted on the exterior of a New Shepard booster and tested technology designed to achieve high accuracy landing. This will enable long-term lunar exploration, as well as future Mars missions.

“Today’s flight was inspiring. Using New Shepard to simulate landing on the Moon is an exciting precursor to what the Artemis program will bring to America,” said Bob Smith, CEO, Blue Origin. “Thanks to NASA for partnering with us, and congrats to the Blue Origin team on taking another step toward returning to the Moon to stay.”

As indicated by the press release, the company focused  on the dozen scientific and technology payloads tested during the flight, particularly the NASA lunar landing systems placed on the outside of the booster. NASA and the other payload owners paid for their rides in a commercial fee-for-service framework. This was not a NASA funded mission. For more info about the payloads, see New Shepard Mission NS-13 Launch Updates – Blue Origin.

This was the first flight of 2020. The 12th New Shepard launch took place last December. There was little info during the webcast regarding an increase in the flight rate or when flights with people on board will happen.

Liftoff is at around 37:16 into this replay of the mission webcast:

This video highlights the NASA funded technology tested during the flight:

On Tuesday, October 13, 2020, Blue Origin launched mission NS-13 to space and back. On this flight, New Shepard flew 12 commercial payloads, including the Deorbit, Descent, and Landing Sensor Demonstration with NASA’s Space Technology Mission Directorate under a Tipping Point partnership. This was the first payload to fly mounted on the exterior of a New Shepard booster, opening the door to a wide range of future high-altitude sensing, sampling, and exposure payloads.

See also:

** Northrop Grumman Cygnus cargo vessel berthed to the ISS following launch on an Antares rocket from Wallops Island on October 2nd: Northrop Grumman Successfully Launches 14th Cargo Delivery Mission to the International Space Station | Northrop Grumman

“A Northrop Grumman Antares rocket, with the company’s Cygnus spacecraft aboard, launches at 9:16 p.m. EDT, Friday, Oct. 2, 2020, from the Mid Atlantic Regional Spaceport’s Pad-0A, at NASA’s Wallops Flight Facility in Virginia. Northrop Grumman’s 14th contracted cargo resupply mission for NASA to the International Space Station is carrying nearly 8,000 pounds of science and research, crew supplies, and vehicle hardware to the orbital laboratory and its crew. On Monday, Oct. 5, Cygnus was successfully berthed to the space station.” Image Credit: NASA/Terry Zaperach

The Cygnus arrived at the station October 5th and successfully berthed soon after:

Northrop Grumman Corporation’s (NYSE: NOC) Cygnus spacecraft was successfully captured by Commander Chris Cassidy of NASA using the International Space Station’s robotic Canadarm2 at 5:32 a.m. EDT [Oct.5th] after its launch on the company’s Antares rocket on Oct. 2 from Wallops Island.

The S.S. Kalpana Chawla executed a series of thruster burns during its three day journey to the station. Once Cygnus was in close range, crew members grappled the spacecraft with the station’s robotic arm. Cygnus was then guided to its berthing port on the Earth facing side of the station’s Unity module and officially installed to the space station at 8:01 a.m. EDT.

Cygnus will remain berthed to the International Space Station for approximately three months while more than 8,000 pounds of cargo is unloaded and astronauts reload the vehicle with disposal cargo. Cygnus will then undock and complete its secondary mission of hosting both the Northrop Grumman-built SharkSat payload and the Saffire-V experiment. The SharkSat prototype payload is mounted to Cygnus and will collect performance data of new technologies in low Earth orbit. To learn more about these payloads, visit Northrop Grumman’s website.

“Oct. 5, 2020: International Space Station Configuration. Four spaceships are docked to the space station including Russia’s Progress 75 and 76 resupply ships and Soyuz MS-16 crew ship and Northrop Grumman’s Cygnus-14 resupply ship.” Credits: NASA

** Virgin Orbit update: Here is a video about Virgin Orbit‘s progress towards a second test flight of the LauncherOne:

The company is trying to raise a couple hundred million dollars to sustain itself until it reaches operational status: Richard Branson’s Virgin Orbit Seeks $1 Billion Valuation in Fundraising – WSJ.

** ExoTerra Resource to develop a solar electric powered upper stage for Virgin Orbit’s LauncherOne rocket. The stage will enable payloads to reach GEO and lunar orbits and beyond. ExoTerra to develop upper stage for Virgin Orbit LauncherOne – SpaceNews

With ExoTerra’s Solar Electric Propulsion Upper Stage, LauncherOne customers could reach destinations including geostationary orbit, trans-lunar injection orbit, Earth-Moon Lagrange points and low lunar orbit, according to the ExoTerra news release.

“This win allows ExoTerra to begin development of an upper stage that will deliver up to 150 kilograms of payload to the moon,” according to the news release. The upper stage also could transport 180-kilogram payloads to geostationary orbit, the release added.

** Rocket Lab is also aiming for destinations beyond low earth orbit: #SpaceWatchGL Interviews – Peter Beck of Rocket Lab: “I don’t have 50 or 60 years to wait” – SpaceWatch.Global

Rocket Lab belongs to the top private launcher companies globally. With 14 launches and 55 deployed satellites, the company is one of the most vibrant actors in the space launcher market. SpaceWatch.Global Editor-in-Chief Markus Payer got the chance to talk to Peter Beck, Founder and CEO of Rocket Lab, to discuss Rocket Lab’s ambitions to go to Venus, its strategy, vertical integration and fundamental questions of humanity.

New Zealand is proud of the country’s rocket company: ‘Most successful startup since SpaceX’ – Americans hail Rocket Lab – NZ Herald.

** Firefly takes a big step towards first Alpha launch as booster passes final certification test firings:

** Relativity Space advances 3D printing of large structures: Inside Relativity Space HQ: 3D printer rocket ‘factory of the future’ – CNBC

Relativity is currently building the first iteration of its Terran 1 rocket. But unlike other rockets, Relativity is using multiple 3D-printers, all developed in-house, to build Terran 1. The rocket is designed to have about 95% of its parts be 3D-printed, which allows Relativity’s rocket to be less complex, and faster to build or modify, than traditional rockets. Additionally, Relativity says its simpler process will eventually be capable of turning raw material into a rocket on the launchpad in under 60 days.

While Relativity had made progress testing its 3D-printing technology, the company’s 120,000 square foot headquarters will serve as the foundation for its manufacturing and launch business. Relativity is now on its third generation of 3D-printers, capable of manufacturing a single piece of metal up to 32 feet tall – as high as the new ceiling allows.

The first launch is targeted for late 2021. They are aiming for a price of $12M per flight.

** China launches another Gaofen observation satellite on a Long March-3B rocket. Liftoff was from the Xichang Satellite Launch Center in southwest China:

** A review of commercial launch in China: The English language podcast Dongfang Hour focuses on Chinese aerospace and technology. Here is a two-part program about the development and status of commercial launch industry in China:

**** China’s Long March to Commercial Launch

This week, we discussed the history of China’s commercial launch industry, and commercial space industry more generally. This included:

00:00 – Introduction 04:47 – The 1980s and the Origins of Chinese Commercial Launch
13:19 – From Encouraging Growth experience to a shift after multiple failures by Chinese launch vehicles: the 1990s
21:17 – Post-2000 China in the ITAR Export Control Environment
36:14 – Residual Deals between China and Western Countries: ITAR-Free Products and Services
39:38 – Digging Into China’s Family of Long March Rockets
43:06 – The future of Chinese commercial launch, including discussion on the plethora of commercial companies entering the market

**** What’s the Situation with Chinese Private Launch Startups ?

Last time we left off at the dawn of China’s private launch era. Having discussed the major state-owned companies and their respective rockets, we will now shift our attention to the plethora of privately-owned launch companies entering the Chinese market today. On today’s episode, we will discuss: Who are China’s private launcher companies, and what type of rockets are they building? What is the relationship between state-owned and privately-owned launcher companies in China? Who do the private launcher companies hope to sell their services to? What are some of the similarities and differences between Chinese private launcher companies and their western counterparts? The episode timestamps can be found below:

00:53 – Introduction
03:01 – Historical perspective
04:31 – Why has China allowed private companies to enter the launch industry?
09:51 – Two generations of private launch companies
17:03 – The founding teams
22:34 – Strong ties with provincial governments
25:00 – Propulsion technology and reusability
34:56 – Comparing Private and state-owned launch vehicles
37:55 – Is there enough market demand to sustain so many launch companies?
45:29 – Implication of Chinese tech companies in space

Continue reading Space transport roundup – Oct.14.2020

Space transport roundup – Sept.30.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** Scrubs and delays continue to plague ULA and SpaceX launch plans. The ULA Delta IV Heavy launch of the NROL-44 spysat has been trying to lift off since August but various ground system and weather problems have kept it grounded.  Weather has been the primary factor in keeping three SpaceX Falcon 9 rockets from flying two StarLink missions and one USAF GPS

[ Update: The Delta IV Heavy launch of the NROL-44 classified payload was aborted again late Wednesday. In this case, the abort happened at 7 seconds before liftoff. (An abort on August 29th happened 3 seconds before scheduled liftoff.) Commentators on the NSF webcast said there will be a delay of at least a week to prepare for the next attempt: ULA suffers another abort during Delta IV Heavy’s attempt to launch NROL-44 – NASASpaceFlight.com ]

As of Wednesday, Sept.30th, the current Florida launch planning shows:

  • NROL-44 Delta IV Heavy – 11:54 pm EDT – Sept. 30th (354 GMT on 1st)
  • Starlink-12 Falcon 9, Pad 39A KSC -9:17 am EDT (1317 GMT) – Oct. 1st
  • GPS 3 SV04 Falcon 9, SLC-40 Cape Canaveral   9:43-9:58 p.m. EDT on 2nd ( 0143-0158 GMT on 3rd) – Oct. 2nd
  • Starlink-13 Falcon 9, SLC-40 Cape Canaveral – In October but no date announced yet.

More at SpaceX rockets await launch opportunities later this week – Spaceflight Now.

** Northrop Grumman Antares rocket set to launch Cynus cargo vehicle to the ISS Thursday evening at 9:38 pm EDT ( 0138 GMT, Oct. 2) from Wallops Island”s commercial spaceport: Prelaunch Briefing for Northrup Grumman’s 14th Cargo Resupply Mission to Space Station

During a Sept. 28 news briefing at NASA’s Wallops Flight Facility, in Virginia, the agency’s commercial partner, Northrop Grumman and others discussed the prelaunch status of the company’s 14th commercial resupply mission to the International Space Station. On Oct. 1, Northrop Grumman’s Cygnus cargo spacecraft is targeted to launch aboard an Antares rocket from Wallops. The Cygnus will carry nearly 8,000 pounds of research, crew supplies and hardware to the station.

** A Russian Soyuz 2.1b sent 3 comm-sats and 18 smallsats into orbit:

** China launches two environmental monitoring/disaster management satellites on a Long March-4B from the Taiyuan Satellite Launch Center on Sunday. There was no prior public announcement of the launch.

From CGTN:

The new HJ-2A and HJ-2B satellites will replace the previous generation of environmental monitoring satellites HJ-1A and HJ-1B, to provide services concerning environmental protection, natural resources, water conservancy, agriculture and forestry, according to the satellite developer China Academy of Space Technology (CAST).

The HJ-2A and HJ-2B are 16-meter optical satellites with high mobility, precision control and stability, as well as strong load adaptability and long lifespans.

The satellites can provide 16-meter multispectral, 48-meter hyperspectral and infrared image data.

They will support the monitoring of natural disasters and land utilization, regulation and protection of water resources, dynamic monitoring of crop areas and assessment of yield, as well as quake emergency rescue.

** Germany’s HyImpulse launch company tests hybrid motor: First hot fire testing of the 75kN HyImpulse hybrid rocket motor –

At midday of Tuesday 15 September, the first firing of the HyImpulse 75kN hybrid rocket motor was a full success! It was performed at the world class DLR Lampoldshausen testing facility. This is the biggest hybrid rocket motor ever built and tested in Europe. This marks an important milestone in accomplishing our plan for a suborbital flight in early 2021 and the first flight of the three stage HyImpulse launcher SL1 by the end of 2022. HyImpulse is the first German Mini -Launcher startup to have its full-size flight weight motor developed, built and hot fire tested on a test bench. With the NewSpace Launch sector heating up, this important milestone immensely advances our international position in this area. The test confirms that the rocket propellants based on our proprietary Paraffin /LOX formulation achieve the same high performance as liquid hydrocarbon-based fuels with a much-simplified propulsion system and at a fraction of the cost.

See also: HyImpulse hybrid rocket motor roars to life for the first time – SpaceNews.

** Rocket Factory Augsburg plans for their RFA One Launcher to lift off from Norway in 2022: Rocket Factory Augsburg Signs Agreement with Andøya Space for maiden launch – Andøya Space Center

Andøya Space is developing the new launch complex on Andøya island, 35 km south of their existing sub-orbital launch site. This new site will provide operators of vehicles in the 1.5t payload class with independent integration facilities and access to two launch pads with necessary support infrastructure.

Rocket Factory, a start-up backed by the German satellite manufacturer OHB as a strategic investor and Munich-based venture capital firm Apollo Capital Partners, currently is developing a launcher system called RFA ONE for small satellites with a payload performance of up to 1.500kg to low earth orbit (LEO). The first launch is scheduled for 2022. The company recently qualified the upper stage tank system during cryogenic tests and is currently preparing hot-fire tests of the main engine in Esrange, Sweden.

“We are convinced that Rocket Factory is one of the most progressive SSLV companies in Europe. Having them commit to Andøya Space as a partner is of great significance to us. We are developing an efficient multi-user launch site in Norway, and Rocket Factory has the technical capabilities, the same innovative culture, and the enthusiastic team we need in a partner to help us take the spaceport initiative forward. We look forward to supporting them in their missions to polar- and sun synchronous orbits.”, said Odd Roger Enoksen, CEO and President of Andøya Space.

RFA is at the forefront of the global new-space launch vehicle development, with its state-of-the-art staged-combustion engine technology. This high-performance engine design, coupled to lowest-possible-cost production techniques, is essentially new to Europe, and through the support of OHB, RFA has managed to acquire key technologies and key talent that will propel the business case of the RFA One launch vehicle to dominate the market on a global scale. Recent firing tests have demonstrated that RFA is on a winning path to establish Europe’s most efficient and powerful rocket engine technology. Recently, RFA won the first round of the micro-launcher competition of the German Space Agency DLR, which granted RFA a letter of support to submit a proposal to ESA’s Boost! programme.

** Masten Terrestrial Rocket Testbed Introduction: Masten Space Systems highlights their vertical takeoff and landing rocket flight services.

** India’s Skyroot Aerospace shows off new cryogenic methane-fueled engine:

The company is aiming to launch the first Vikram-1 rocket, which will use solid fueled motors in all stages, in December 2021. The cryogenic engine will be used for the upper stage of the Vikram-2 rocket.

More about Skyroot at:

While the company has successfully tested the upper-most stage engine of its first rocket Vikram-I, the initial stage engines of Vikram-I are being manufactured. If all goes well, the company is looking forward to a maiden launch of Vikram-I by December 2021, with the support and guidance of the Indian Space Research Organization(ISRO). The cryogenic engine won’t see action in Vikram-I and is meant for their bigger rocket Vikram-II. 

In terms of payload capacity, Vikram I is meant to lift 225 kg to 500 km Sun Synchronous Polar Orbit(SSPO) and 315 kg to 45º inclination 500 km Low Earth Orbit (LEO). Vikram II is designed for 410 kg to 500 km SSPO and 520 kg to 45º inclination 500km LEO. In the case of Vikram III, we are looking at 580 kg to 500 km SSPO and 720 kg to 45º inclination 500 km LEO. 

** bluShift Aerospace will test bio-fuel in low altitude rocket flight at a site in Maine:  Brunswick aerospace company sets date for rocket launch – Portland Press Herald

Years of planning will be on the line Oct. 21 with the launch of bluShift’s 20-foot test rocket, the Stardust 1.0. The company hopes to launch the 540-pound Stardust 4,500 feet into the air, about twice as high as the world’s tallest skyscraper, before landing safely back onto the ground at the Loring Commerce Centre, formerly known as the Loring Air Force Base. The trip will use 10 pounds of bluShift’s trademark fuel.

The rocket will be airborne for roughly 58 seconds, a tiny span of time compared with the years of work it took for engineers to get to this point. But Deri and his team understand the gravity of this moment.

“This launch is the culmination of six years of research and development by bluShift to develop a type of chemical rocket engine that is perhaps less understood than more common technologies” he says, hoping to demonstrate the functionality of a “bio-derived, carbon-neutral, high-performing and even less expensive than its liquid petroleum counterpart.”

** Scott Manley describes the design and operation of the Space Shuttle solid rocket boosters: The Amazing Engineering Behind Solid Rocket Boosters

The solid rocket motors on the space shuttle accounted for the majority of the launch mass and launch thrust. They’re the most powerful rocket thrusters ever flown, at least until the 5 segment versions take flight with SLS in the next year or so. I’ve often described solid rocket motors as being relatively simple compared to the complex plumbing, pumps and turbines of liquid rocket motors. However there’s still a huge amount of critical engineering and science that goes into these boosters. The design of the boosters were also partly responsible for the accident that destroyed Challenger during launch.

** And Manley highlights the spaceship capabilities of the ISS: How the Space Station Moves In Orbit Like A Spaceship

Many people don’t realise that the International Space Station is also a space ship, able to maneuver in space as required by mission operations. It has thrusters and control moment gyros to control its orientation and adjust its orbit.

I could have explaind this with CGI, I could have used KSP Instead I decided to use my LEGO model of the ISS as a prop: The LEGO ISS is available on Amazon and other online retailers. https://amzn.to/3kV4aqC

** Briefs:

==================

Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Strides and Views, Rocket Lab, Bernard Kutter, RIP
Vol. 15, No. 6, September 18, 2020

Space Frontier Foundation Award for NewSpace Journalism

==================

** SpaceX:

** Launch of first operational SpaceX Commercial Crew mission now set for October 31st:

Some of the delay from the original late August target date was due to an issue with the Crew Dragon heat shield showing more erosion than expected around the areas where the service stage bolts to the capsule. The problem had to be diagnosed, and then a fix designed, implemented and tested. There will also be an adjustment to the timing of the drogue chute deployment, which happened a bit later than desired.

Final certification of the Crew Dragon/Falcon 9 for operational crew missions will be presented about a week before the launch.

Between now and the end of 2021, SpaceX and NASA expect to launch seven Dragon missions – three crew and four cargo. The Cargo Dragon vehicles will now be reconfigured versions of the Crew vehicles. There will be times when both types of Dragon vehicles (Crew and Cargo) are docked to the station at the same time.  SpaceX has busy manifest of Dragon missions – SpaceNews

The CRS-21 mission will also mark the first time two Dragon spacecraft are in space at the same time. That mission will remain docked to the station for 35 days before returning to Earth. After that, the Crew-2 astronauts will board the Crew Dragon and relocate it from its original docking port, called Node 2 Forward, to the neighboring Node 2 Zenith port. That would free up the Node 2 Forward port, which offers a more straightforward approach to the station, for an uncrewed Boeing CST-100 Starliner test flight tentatively scheduled for late this year.

Flying seven Dragon missions in 14 months will require some degree of spacecraft reuse, Reed said. “A number of them are reused flights, and a handful of them are new,” he said, but didn’t immediately know how many of the missions will use previously flown spacecraft. NASA and SpaceX previously said they would refurbish the Dragon flown on the Demo-2 test flight this summer for the Crew-2 mission. Both Crew-1 and possibly Crew-3 will use new spacecraft, he said.

Continue reading Space transport roundup – Sept.30.2020