Student and amateur CubeSat news roundup – Sept.24.2020

A sampling of recent articles, press releases, etc. related to student and amateur CubeSat / SmallSat projects and programs (find previous smallsat roundups here):

** Western University (Canada) and Arizona State teams to collaborate on CubeSat project:

[On Sept. 23rd] …Western signed a game-changing memorandum of understanding (MoU) with the MILO Institute, a non-profit research collaboration led by Arizona State University and supported by Lockheed Martin and its subsidiary GEOshare.

As part of the agreement, [Electrical and computer engineering professor Jayshri] Sabarinathan and her Western Space collaborators will contribute a one-unit CubeSat (a square-shaped miniature satellite roughly the size of a Rubik’s cube) to a MILO Institute and University of Texas at El Paso flight mission planned for June 2021 – an aggressive timeline, she admits, but that just adds to the excitement.

The project will contribute to development of technology for lunar and other deep space exploration.

Sabarinathan is also leading the Western Institute of Earth & Space Exploration team in another CubeSat project:

For the past two years, Sabarinathan and her team have been designing, developing and constructing a CubeSat with research partners at Nunavut Arctic College and Canadensys Aerospace Corporation, scheduled for launch in 2022. Ukpik-1, a two-unit CubeSat project outfitted with 360-degree imaging VR cameras and funded by the Canadian Space Agency, will fly to the International Space Station in two years. Next summer’s ‘bonus’ launch provides the team with an unexpected – but most-opportune – test run for its endeavour.

** Imperial College group delivers miniature magnetometer instrument for ESA RadCube mission to study the solar wind: Imperial completes new space mission instrument despite lockdown challenges – Imperial College London

The RadCube mission is designed to test new technologies for monitoring space weather – the variations in the solar wind coming from the Sun, which can disrupt and damage satellites and infrastructure on Earth.

RadCube is a ‘cubesat’ mission, which are designed to use smaller, cheaper and lower-power components than traditional space missions. The technologies in RadCube, if proven to work well in space, could be used in a range of future missions, such as constellations of multiple cubesats working together to measure the solar wind. CubeSat spacecraft are typically constructed upon multiples of 10 × 10 × 10 cm cubes, and RadCube is made up of three of these base units.

Imperial academics and technicians from the Department of Physics this week delivered a miniature magnetometer to the project in Hungary – an instrument that measures the interactions between the Earth’s magnetic field and that carried by the solar wind, which is a major component of space weather monitoring.

Rendering of the RadCube satellite. The MAGIC instrument sits on the end of the boom at the bottom. Credits: Imperial College

The individual detectors on their instrument – called MAGIC (MAGnetometer from Imperial College) – are less than a millimetre in size, and the total instrument sensor is only four centimetres cubed. This is in comparison to the sophisticated magnetometers the lab builds for large and expensive space missions, such as the recent Solar Orbiter mission and the upcoming JUICE mission, which are much larger and weigh a couple of kilograms.

The MAGIC instrument also uses less than a watt of power, compared to up to 20 watts for the larger instruments. While MAGIC is not as sensitive as these larger instruments, as it is much cheaper to build and uses far less power, the technology could be carried on several spacecraft working in tandem. In this way, the lower-quality data is compensated by a much larger volume of data.

The MAGIC (MAGnetometer from Imperial College) for the RadCube spacecraft. Credits: Imperial College

** Update on the UAE MeznSat student satellite: Mini satellite developed by UAE students to launch this month – The National

A miniature satellite developed by university students in the UAE to observe the country’s climate will launch later this month.

MeznSat was funded by the UAE Space Agency and built by engineering and science students at the Khalifa University and American University of Ras Al Khaimah (Aurak).

MeznSat’s initial lift-off was scheduled for the end of 2019, however it was delayed twice and will now blast into the skies on a Soyuz-2b rocket from Russia on September 28.

It is the third miniature satellite – known as a CubeSat – constructed in the Emirates.

See previous postings about the MeznSat project here, here, and here.

** AMSAT news on student and amateur CubeSat/smallsat projects:

ANS-257 AMSAT News Service Special Bulletin

  • Virtual 2020 AMSAT Space Symposium and Annual General Meeting on October 17, 2020
  • AMSAT Virtual Symposium Call for Papers
  • Preparations Continue for World Radiocommunication Conference 2023
  • Changes to AMSAT-NA TLE Distribution for September 10, 2020
  • AMSAT-DL Announces Virtual Satellite Symposium September 26, 2020
  • AMSAT-UK Announces Colloquium 2020 October 11, 2020
  • Upcoming Satellite Operations
  • ARISS News
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts from All Over

ANS-264 AMSAT News Service Special Bulletin

  • AMSAT Board of Directors Elections Results
  • July/August AMSAT Journal Is Now Available
  • RAC Canada 2020 Conference and AGM is this Sunday
  • AO-7 Approaching Return To Full Illumination
  • Changes to AMSAT-NA TLE Distribution
  • Ham Radio Club Talk Collection On YouTube
  • ARISS News
  • Upcoming Satellite Operations
  • Hamfests, Conventions, Maker Faires, and Other Events
  • Satellite Shorts From All Over

General CubeSat/SmallSat info:

** Sierra Foothills ARC August 2020: Cubesats! The story of the ASU Phoenix Cubesat project

The Sierra Foothills ARC was privileged to have Devon KM6MDG and Trevor KM6MDH talk about their work on the Phoenix Cubesat, AzTechSat-1. The two are graduate students at Arizona State University, and were involved with the program from shortly after conception, through deployment from the International Space Station, to operation afterward. In their talk, they review the objectives of the satellite, talk about its construction and their roles and challenges, and detail its current status.

** Welcome to the Space and Satellite Systems Club [at UC Davis]

The Space and Satellite Systems Club at UC Davis is the premiere space-based engineering club on campus. Our efforts are focused towards developing the skills and technical know-how necessary to design spacecraft by developing, manufacturing, and launching a CubeSat mission to Low-Earth Orbit (LEO). The club focuses on technologies for smaller spacecraft and cube satellites and covers a wide range of research areas from controls and dynamics to sensors, electronics and software. We are currently set to launch our first CubeSat (REALOP) later in 2021. This mission will be a technical demonstration of our in-house developed bus and technological components, the payload on the will serve as an earth sciences mission that will utilize IR and RGB cameras to study the thermal activity of the Earth’s atmosphere from LEO.

** The MILO Space Science Institute: Enabling New, Science-Focused Deep Space Smallsat MissionsThe Global Virtual Workshop I – Stardust-R

** ISS International Space Station Cross Band FM RepeaterTech Minds

Here we take a look at the brand new FM Repeater on board the International Space Station, launched on the 2nd September 2020.

=== Amazon Ad ===

Introduction to CubeSat Technology and Subsystem:
Orbit Design, Debris Impact, and Orbital Decay Prediction

Space transport roundup – Sept.23.2020

A sampling of recent articles, videos, and images dealing with space transport (find previous roundups here):

** Blue Origin plans a New Shepard flight on Sept. 24th:

NS-13 Update: September 22
Next New Shepard Launch Will Test Key Technologies
with NASA for Returning to the Moon

Blue Origin’s next New Shepard mission (NS-13) is currently targeting liftoff for Thursday, September 24, at 10:00 am CDT / 15:00 UTC. Current weather conditions are favorable. This will be the 13th New Shepard mission and the 7th consecutive flight for this particular vehicle (a record), demonstrating its operational reusability.

New Shepard will fly 12 commercial payloads to space and back on this mission, including the Deorbit, Descent, and Landing Sensor Demonstration with NASA’s Space Technology Mission Directorate under a Tipping Point partnership. This is the first payload to fly mounted on the exterior of a New Shepard booster rather than inside the capsule, opening the door to a wide range of future high-altitude sensing, sampling, and exposure payloads.

The lunar landing sensor demo will test precision landing technologies for future missions to the Moon in support of the Artemis program. The experiment will verify how these technologies (sensors, computers, and algorithms) work together to determine a spacecraft’s location and speed as it approaches the Moon, enabling a vehicle to land autonomously on the lunar surface within 100 meters of a designated point. The technologies could allow future missions—both crewed and robotic—to target landing sites that weren’t possible during the Apollo missions, such as regions with varied terrain near craters. Achieving high accuracy landing will enable long-term lunar exploration and future Mars missions.

This is the first of two flights to test these lunar landing technologies, increasing confidence for successful missions in the Artemis program. NS-13 is part of the risk reduction process to test these types of sensors for future missions.

As a part of NASA’s Artemis Human Landing System program, Blue Origin is also leading the National Team, comprised of Lockheed Martin, Northrop Grumman, and Draper, to develop a Human Landing System to return Americans to the lunar surface. The technology for the Blue Origin Descent Element that takes astronauts to the lunar surface is derived from the autonomous landing capabilities developed for the New Shepard program.

New Shepard has flown more than 100 payloads to space across 10 sequential flights. Payloads on board NS-13 include experiments from Johns Hopkins University Applied Physics LaboratorySouthwest Research InstituteNASA Flight OpportunitiesSpace Lab TechnologiesUniversity of FloridaSpace Environment Technologies, and mu Space Corp. A selection of the manifested payloads can be found below.

Also on board will be tens of thousands of postcards from Blue Origin’s nonprofit, Club for the Future, some of which will include a special NASA Artemis stamp.

All mission crew supporting this launch are exercising strict social distancing and safety measures to mitigate COVID-19 risks to personnel, customers, and surrounding communities.

You can watch the launch live at BlueOrigin.com. The pre-show begins at T-30 minutes and will provide mission details, including a special update from NASA Administrator Jim Bridenstine.

** Blue Origin facilities at Cape Canaveral continue to expand:

** Blue Origin planning development of near earth orbit destinations for the company’s future crew vehicles:

The job description begins with:

To develop Blue Origin’s vision of millions of people living and working in space, humanity will require places for them to live and work: space destination systems in which value-creating economic activity can occur. LEO (low Earth orbit) habitable stations, learning from but going beyond the ISS (International Space Station), are a first step. Such stations, supporting a robust LEO economy, will be fundamentally different from “exploration” habitats designed for small, professionally trained crews in deep space.

More at Blue Origin considers entering commercial space station business – SpaceNews

** ULA sets launch of Delta IV Heavy for Sept. 26th at 12:14am EDT ( 0414 GMT) from Cape Canaveral. The NROL-44 mission will launch at a classified spy satellite for the  National Reconnaissance Office (NRO). A launch on August 29th was abort just 3 seconds before liftoff due a ground systems failure.

** Northrop Grumman is set to launch a Cygnus vessel on an Antares rocket on Sept 29th. The Cygnus will deliver cargo to the ISS. Liftoff from Wallops Island, Virginia is targeted for 10:26 am EDT (0226 GMT on 30th)

** China launches Long March 4B rocket with Haiyang-2C ocean observation satellite from the Jiuquan Satellite Launch Center on Monday:

** Nuclear-powered space tug in advanced development by Russia’s KB Arsenal Design Bureau .

Anatoly Zak reports on the project: Russia reveals a formidable nuclear-powered space tug – RussianSpaceWeb.com

After years of near silence, a prominent developer of Russian military spacecraft suddenly publicly floated the first pictures of a massive nuclear-powered space transport undergoing assembly at the company’s facility in St. Petersburg. The KB Arsenal design bureau, which serves as the prime contractor in the project, is known for its Soviet-era nuclear-powered satellites, one of which infamously crashed in the Arctic region of Canada in 1977.

A series of photos and computer-generated imagery, which surfaced on the Internet in 2020 and originated from KB Arsenal clearly revealed the latest version and the planned operation of a very large space tug propelled by electric engines and powered by a nuclear source.

The project officially known as the Transport and Energy Module, TEM, has been well known to the watchers of the Russian space program for more than a decade.

Tracing its roots to the dawn of the Space Age, the TEM concept is attempting to marry a nuclear reactor with an electric rocket engine. The electric propulsion systems heat up and accelerate ionized gas to create a thrust-generating jet and, therefore, are alternatively known as ion or plasma engines. When measured per unit of spent propellant mass, electric engines are more efficient than traditional liquid or solid-propellant rockets, but their thrust is relatively low at any given time and they require a great deal of electric power to operate. Because of this, until recently, the practical use of electric propulsion in space flight was mostly limited to orbit adjustment systems aboard satellites or to deep-space missions, in which spacecraft could take advantage of low thrust over very long periods of time.

The nuclear reactor would not be activated until the tug was in a high orbit. It would use solar panels for power during the preparatory period. The fuel would not become highly radioactive until after the reactor was turned on.

The TEM space tug truss section with radiator panels in assembly at KB Arsenal. Credits: KB Arsenal & RussianSpaceWeb.com

The photos of a vehicle in construction are new but the existence of TEM and other nuclear powered spacecraft projects had been generally known for awhil: Ekipazh: Russia’s top-secret nuclear-powered satellite – The Space Review – Oct.7.2019.

On February 2, 1998, the Russian government adopted a decree aimed at reviving the dormant Russian space nuclear program. It called for resuming research and development in the field with the goal of producing nuclear reactors with a capacity of up to 100 kilowatts and an operational lifetime of five to seven years after 2010. A key short-term goal was to use nuclear reactors as part of so-called “transport and energy modules” (TEM), a Russian term for electric space tugs. The nuclear reactor would power an electric propulsion system to boost spacecraft to their operational orbits (“transport”) and subsequently provide power to their on-board systems (“energy”). This would make it possible to increase the mass of payloads delivered to high orbits by two to three times and supply them with 10 to 20 times more power than before.[4]

A video of a video shown at an exhibition shows a possible crewed system powered by a TEM:

As with many such Russian projects, the design and ambition are admirable but the execution will be slow (due to low funding, bureaucratic management, etc) and take many years before reaching space. Find occasional updates posted at Russian nuclear propulsion – NASASpaceflight Forum.

** Rocket Lab announces target date for next Electron mission, which will deliver a total of 10 satellites to orbit: Rocket Lab To Launch Commercial Earth-Imaging Rideshare Mission For Planet, Canon Electronics – Rocket Lab

This rideshare mission will be Electron’s 15th launch overall and fifth in 2020, making Electron the second most-frequently launched U.S. rocket this year.

Long Beach, California. 21 September, 2020 – Leading space systems company, Rocket Lab, has today announced its next Electron launch will be a rideshare mission to low Earth orbit for Planet and Spaceflight Inc.’s customer Canon Electronics.

The mission – named ‘In Focus’ in a nod to the Earth-imaging satellites onboard – will lift-off in October from Rocket Lab’s private orbital launch site, Launch Complex 1, in New Zealand. The mission will deploy a total of 10 satellites to precise and individual orbits. The mission will be Rocket Lab’s 15th launch overall and fifth mission of 2020, making Electron the second most-frequently launched United States orbital rocket this year.

Earth-imaging company Planet has nine of their latest generation SuperDove satellites booked on the mission for deployment to a 500km morning-crossing Sun Synchronous Orbit (SSO). Each of the nine SuperDoves will be integrated with and deployed from Rocket Lab’s Maxwell dispensers, the industry’s lightest CubeSat dispenser in its class. Planet’s Flock 4e’ of SuperDoves will join the company’s constellation of Earth-observation satellites already on orbit providing medium-resolution global coverage and near-daily revisit.

The 10th and final payload aboard this mission, Canon Electronics Inc.’s CE-SAT-IIB, was arranged by satellite rideshare and mission management provider Spaceflight Inc. CE-SAT-IIB is a technical demonstration microsatellite developed by Canon Electronics Inc. It has a middle-size telescope equipped with an ultra-high sensitivity camera to take night images of the Earth and small size telescopes which are suitable for CubeSat use.

In a mission later this year, the company will attempt to recover the first stage of the Electron for the first time:

Rocket Lab has multiple missions scheduled for the remainder of 2020, including an upcoming launch in Q4 earmarked for the company’s first Electron first stage recovery attempt. The Electron’s first stage will be equipped with new hardware, including a reaction control system and an in-house designed parachute system, to orient the booster during its re-entry descent and slow down the first stage before a soft landing in the ocean where it will be collected by a ship.

** Firefly test fires Alpha rocket in preparation for first flight:

Here is an extended profile of Max Polyakov, the Ukrainian mogul who rescued Firefly from oblivion: Firefly Aerospace and Max Polyakov Want to Build Smaller Rockets Than SpaceX – Bloomberg

This fish-out-of-water routine is fun, but Polyakov is someone the emerging commercial spaceflight industry needs to take seriously. To date, he’s put $150 million of his own money into rocketry, more than anyone besides Elon Musk, with SpaceX, and Jeff Bezos, with Blue Origin. Polyakov’s company, Firefly Aerospace Inc., runs a vast engine test site about a half-mile from the beer barn. From offices in nearby Cedar Park, Firefly executives have put the company in the mix for a series of contracts to launch satellites into orbit for NASA, the U.S. Department of Defense, and a string of commercial satellite companies.

** Southern Launch in Australia tests sounding rocket:

** HyImpulse Technologies in Germany tests hybrid rocket motor:

** PLD Space of Spain shows off an 180 sec test of the b-prop (Kerosene/LOX) TEPREL-B engine, which  will power the reusable MIURA-1 suborbital rocket:

MIURA 1 Qualification Campaign of the flight engine version (TEPREL-B). PLD Space successfully achieved a 180 seconds test of the MIURA 1 liquid rocket engine. This test is an increased duration test (x1.5 MIURA 1 powered flight time) of the TEPREL-B engine, developed by the company, focused on demonstrating the engine´s endurance and reliability. This test is a key milestone for the engine qualification process. About the company: PLD Space, founded in 2011, and based in Elche, is a Spanish company developing reusable rockets. Currently, PLD Space is working on two launchers, the suborbital MIURA 1 and the orbital MIURA 5.

** Launch system startup Isar Aerospace of Germany aims for the European smallsat constellation market: A German rocket startup seeks to disrupt the European launch industry | Ars Technica

Founded in 2018 by a group of recent engineering graduates who had participated in a rocket research group, plus a few students still in school, Isar chose to focus first on developing an engine. Named Aquila, the engine is fueled by propane and liquid oxygen, and nine of these engines will power the first stage of the company’s “Spectrum” rocket.

With this booster, Isar intends to launch up to 1,000kg to low-Earth orbit. It has not set a price per launch, but it is targeting a competitive price point of 10,000 Euros ($11,700) per kg.

The company concluded a round of seed funding in August 2018—raising in the low millions of Euros, Metzler said—that allowed Isar to build its first test site near Munich, finalize the design of the vehicle, and begin to work on its propulsion system. Isar ramped up its fundraising in December 2019, bringing in 17 million Euros in series A funding. This allowed the company to grow from 25 to 100 employees and build out a 4,500 sq. meter production facility. There, it seeks to build Aquila engines in weeks, rather than months, at the lowest possible cost.

First launch is targeted for 2022. A launch site has not yet been chosen.

** SNC update focuses on the Dream Chaser wings via a profile of a engineer working on them: Employee Spotlight: Meet Dream Chaser Structural Engineer, Gracie P – Sierra Nevada

Dream Chaser is a lifting body which means that the actual body of the vehicle provides much of the required lift, whereas on a standard aircraft, you would expect the wings to do the lifting.  That does not, however, mean that you can count the Dream Chaser wings out.  The design and analysis of the wings proved to be a decisively complex technical problem. Developing the loading criteria for the wings resulted in many iterations in the analysis to prove the wings could withstand the extreme conditions from orbital re-entry. As a result, the wings have some of the thickest composite on Dream Chaser. The wing skins are optimized for weight and each section was sized based off of analysis that I performed, with the thickest sections being at the root of the wing, while the tip is relatively thin. All of the analysis that I completed culminated in the completion of the composite co-bonded wings being delivered to our production facilities in Louisville, CO.

** Briefs:

==================

Check out the
The Lurio Report
for news and analysis of key developments in NewSpace

The latest issue:
Strides and Views, Rocket Lab, Bernard Kutter, RIP
Vol. 15, No. 6, September 18, 2020

Space Frontier Foundation Award for NewSpace Journalism

==================

** SpaceX:

Continue reading Space transport roundup – Sept.23.2020

Space policy roundup – Sept.21.2020

A sampling of links to recent space policy, politics, and government (US and international) related space news and resource items that I found of interest (find previous space policy roundups here):

International space

Webcasts:

** Space Café Podcast Episode 011 Featuring Sara Langston Is Now Available – SpaceWatch.Global

Sara Langston teaches at the time-honored Embry Riddle flight school and knows what astronauts had to endure before they were allowed into orbit. But many things change. Not only the attitude of the students when it comes to challenging subjects. The whole industry is breaking new ground. In this episode Sara succeeds in a tour de force through a number of fascinating topics: Is it allowed to buy land on the moon, is ethics an obstacle or the future of research and why is space law the best subject in the world?

** The Rise of China in SpaceNewsthink

** The Space Show – Tues. Sept.15.2020Dr. Ajay Kothari of Astrox Corp discussed “his plans for getting to the lunar surface post pandemic”.

**The Space Show – Fri. Sept.18.2020 –  Dr. Peter Hague  discussed his “new metric system for measuring the quality, effectiveness, economics of space programs based on mass”. See Hague’s paper, A Metric of Solar System Development.

 

** Sun. Sept.20.2020Wayne White, founder and CEO of SpaceBooster LLC, talked about his Space Pioneer Act for space property rights and more

** E32 – Integrating Space into Joint Warfighting Analysis (w Russell Rumbaugh and special guests)Aerospace Corp – Center for Space Policy & Strategy (CSPS}

** E33 – Japan’s New Space Policy – Its Intersection with Missile & Missile Defense Activity (with Sam Wilson and special guests)Aerospace Corp – Center for Space Policy & Strategy

** September 18, 2020 Zimmerman/Batchelor podcast | Behind The Black

** September 16, 2020 Zimmerman/Batchelor podcast | Behind The Black

==

=== Amazon Ad ===

Space Is Open for Business:
The Industry That Can Transform Humanity

The Space Show this week – Sept.21.2020

The guests and topics of discussion on The Space Show this week:

1. Monday, Sept.21, 2020; 7 pm PDT (9 pm CDT, 10 pm EDT: No special programming.

2. Tuesday, Sept. 22, 2020; 7 pm PDT (9 pm CDT, 10 pm EDT): We welcome back Les Johnson to discuss his new edited book, Stellaris: People of the Stars[Amazon commission link], which features stories and speculation from the best of the best around the world.

3. Wednesday, Sept. 23, 2020: Hotel Mars TBA pre-recorded. See upcoming show menu on the home page for program details.

4. Thursday, Sept.24, 2020; 7-8:30 pm PDT (9-10:30 pm CDT, 10-11:30 pm EDT): No program for this date.

5. Friday, Sept.25, 2020; 9:30-11 am PDT (11:30 am-1 pm CDT, 12:30-2 pm EDT): No program planned due to DL non-space business matters. Please check the website upcoming show menu for any last minute changes.because I will post them there if my appointments change.

6. Sunday, Sept.27, 2020; 12-1:30 pm PDT (3-4:30 pm EDT, 2-3:30 pm CDT): We welcome Dr. Keith Crane to the show on space economics and the Institute for Defense Analysis report, Measuring the Space Economy: Estimating the Value of Economic Activities in and for Space. You can access the report by checking the blog for this show on The Space Show website.

Some recent shows:

** Tues. Sept.15.2020Dr. Ajay Kothari of Astrox Corp discussed “his plans for getting to the lunar surface post pandemic”.

** Hotel Mars – John Batchelor/The Space Show – Wed. Sept.20.2020 – John Batchelor and Dr. David Livingston talk with Dr. Shuai Li  from the University of Hawaii Geophysical Dept. talked about finding rust on the Moon and its probable cause.

** Fri. Sept.18.2020 –  Dr. Peter Hague  discussed his “new metric system for measuring the quality, effectiveness, economics of space programs based on mass”. See Hague’s paper, A Metric of Solar System Development.

** Sun. Sept.20.2020Wayne White, founder and CEO of SpaceBooster LLC, talked about his Space Pioneer Act for space property rights and more

** See also:
* The Space Show Archives
* The Space Show Newsletter
* The Space Show Shop

The Space Show is a project of the One Giant Leap Foundation.

The Space Show - David Livingston
The Space Show – Dr. David Livingston

=== Amazon Ad ===

Space Is Open for Business:
The Industry That Can Transform Humanity

Videos: “Space to Ground” + Other ISS reports – Sept.18.2020

Here is the latest episode in NASA’s Space to Ground weekly report on activities related to the International Space Station:

** Astronaut Jeanette Epps – First Operational Boeing Crew Mission to ISSSpace Snack

NASA has assigned astronaut Jeanette Epps to NASA’s Boeing Starliner-1 mission, the first operational crewed flight of Boeing’s CST-100 Starliner spacecraft on a mission to the International Space Station. Epps will join NASA astronauts Sunita Williams and Josh Cassada for a six-month expedition planned for a launch in 2021 to the orbiting space laboratory. The flight will follow NASA certification after a successful uncrewed Orbital Flight Test-2 and Crew Flight Test with astronauts. The spaceflight will be the first for Epps, who earned a bachelor’s degree in physics in 1992 from LeMoyne College in her hometown of Syracuse, New York. She completed a master’s degree in science in 1994 and a doctorate in aerospace engineering in 2000, both from the University of Maryland, College Park.

** Earth Views from the International Space StationAmericaSpace

The International Space Station’s High Definition Earth Viewing (HDEV) experiment is an external camera platform located on the Columbus module of the space station. In addition to providing beautiful views of Earth, one of the goals of HDEV is to monitor the longevity and quality of its image sensors in the space environment. HDEV operations began April 30, 2014 and only a single bad pixel has been identified. Credit: NASA

** ISS transit of Mars, September 14, 2020Tom Glenn

The International Space Station (ISS) transits Mars, as captured from San Diego, CA on September 14, 2020 at 05:15:47 PDT (12:15:47 UT). This required being positioned exactly on the line shown in the map in the video, to within less than 100m accuracy on the ground. This is complicated by the fact that the ISS orbit is inherently unstable in low Earth orbit, which causes the predicted ground path to change by small amounts leading up to the event. Even at the time of the event, the best prediction is associated with a small amount of error, on the order of one ISS diameter (~100m). At the time of this image, my telescope was sitting directly on the GPS coordinates of the predicted centerline of the transit, but you can see the center of the ISS was ever so slightly below the disk of Mars. However, it was close enough, and part of the solar arrays appear to touch the planetary disk in one frame. Still images at higher quality are available at the following links https://flic.kr/p/2jH5Dnu https://flic.kr/p/2jH6zRa

** The International Space Station: A Remarkable Feat of Human CooperationMegaprojects

** International Space Station – Episode 55 – 2019 MissionsKevin Gustafson – YouTube

In this episode we review the launches and departures to the International Space Station in 2019. This includes the Soyuz MS-14 test launch, and the record breaking Progress MS-11 and MS-12 fast track rendezvous.

=== Amazon Ad ===

Outpost in Orbit:
A Pictorial & Verbal History of the Space Station

== Amazon Ad ==

LEGO Ideas International Space Station Building Kit,
Adult Set for Display,
Makes a Great Birthday Present
(864 Pieces)