My interview on The Space Show

I was a guest on The Space Show yesterday with David Livingston: The Space Show – Fri, 01/27/2017 – 09:30 –  Dr. Clark Lindsey

We welcomed Dr. Clark Lindsey back to the program. During our 92 minute program, we talked about changes and trends leading up to today’s NewSpace and commercial space industries. We covered most if not all the industry segments, major companies and projects and programs currently underway. This was a wide ranging program you will find most interesting. We even discussed company fiances, making money in space and much more. Read the full program summary at www.thespaceshow.com for this program this date, Friday, Jan. 27, 2017.

It was a fun discussion with David.  You can listen here to the audio:

=====

Moontopia contest entrants design lunar colonies

Eleven Magazine sponsored a contest called MOONTOPIA, which invited people to submit designs “for a self-sufficient lunar colony for living, working, researching and space tourism”. There were hundreds of entrants and they chose one winner and 8 runners-up. See descriptions of the nine designs at Moontopia competition-winners show nine visions for lunar architecture – dezeen.com.

The winner was Lunar Test Lab:

The Testlab settlement is based on the idea of the Russian Babushka Doll – one layer protects the next. On the very inside of the settlement are the Pods, which inhabit the private sleeping quarters, the communal rooms, the greenhouse, as well as the experimental labs and the necessary machinery to sustain life on the moon. Between the pods and the outer most protective membrane is the void that acts as yet another protective layer between livable and unlivable space.

Here is one of the runners-up called Platinum City:

 

Inhabitants:

3000 permanent ‘post-human moon citizens’.

Size:

Currently spanning 7km from the city to the space elevator port and growing. Awaiting teraforming landscape update and expansion of the drone membrane artificial atmosphere.

Video: Exocomets – “Now you see them, now you don’t”

Thousands of exoplanets around other stars have now been detected (mostly indirectly) in the past couple of decades. Now exocomets at other stars have also been detected. Here is a SETI Seminar about these distant dirty snowballs:

From the caption:

Present technology does not enable us to view images of these kilometer-sized infalling bodies, but the evaporation of gaseous products liberated from exocomets that occurs close to a star can potentially cause small disruptions in the ambient circumstellar disk plasma. For circumstellar disks that are viewed “edge-on” this evaporating material may be directly observed through transient (night-to-night and hour-to-hour) gas absorption features seen at rapidly changing velocities.

Using high resolution spectrographs mounted to large aperture ground-based telescopes, we have discovered 15 young stars that harbor swarms of exocomets. In this lecture we briefly describe the physical attributes of comets in our own solar system and the instrumental observing techniques to detect the presence of evaporating exocomets present around stars with ages in the 10 – 100 Myr range.

We note that this work has particular relevance to the dramatic fluctuations in the flux recorded towards “Tabby’s star” by the NASA Kepler Mission, that may be explained through the piling up of swarms of exocomets in front of the central star.

Hubble telescope sees faster than expected expansion of the Universe

The latest cosmic finding with the Hubble Space Telescope:

Cosmic lenses support finding on
faster than expected expansion of the Universe

By using galaxies as giant gravitational lenses, an international group of astronomers using the NASA/ESA Hubble Space Telescope has made an independent measurement of how fast the Universe is expanding. The newly measured expansion rate for the local Universe is consistent with earlier findings. These are, however, in intriguing disagreement with measurements of the early Universe. This hints at a fundamental problem at the very heart of our understanding of the cosmos.

HE0435-1223, located in the centre of this wide-field image, is among the five best lensed quasars discovered to date. The foreground galaxy creates four almost evenly distributed images of the distant quasar around it. [Larger images.]
The Hubble constant — the rate at which the Universe is expanding — is one of the fundamental quantities describing our Universe. A group of astronomers from the H0LiCOW collaboration, led by Sherry Suyu (associated with the Max Planck Institute for Astrophysics in Germany, the ASIAA in Taiwan and the Technical University of Munich), used the NASA/ESA Hubble Space Telescope and other telescopes [1] in space and on the ground to observe five galaxies in order to arrive at an independent measurement of the Hubble constant [2].

Objects with large masses such as galaxies or clusters of galaxies warp the spacetime surrounding them in such a way that they can create multiple images of background objects. This effect is called strong gravitational lensing. Credit: ESA/Hubble, NASA

The new measurement is completely independent of — but in excellent agreement with — other measurements of the Hubble constant in the local Universe that used Cepheid variable stars and supernovae as points of reference [heic1611].

This montage shows the five lensed quasars and the foreground galaxies studied by the H0LICOW collaboration. Using these objects astronomers were able to make an independent measurement of the Hubble constant. They calculated that the Universe is actually expanding faster than expected on the basis of our cosmological model. [Larger images.]
However, the value measured by Suyu and her team, as well as those measured using Cepheids and supernovae, are different from the measurement made by the ESA Planck satellite. But there is an important distinction — Planck measured the Hubble constant for the early Universe by observing the cosmic microwave background.

Distant quasars tend to change their brightness, causing them to flicker. As the light which creates the different images of the quasar follows paths with slightly different lengths, the images do not flicker simultaneously but are delayed with respect to each other by several days. This delay in flickering can be used to measure the Hubble constant which describes the speed of expansion of our Universe.

While the relative time between two flickers is correctly represented in this animation, in reality the delays are in the range of days to two weeks. Credit: ESA/Hubble, NASA

While the value for the Hubble constant determined by Planck fits with our current understanding of the cosmos, the values obtained by the different groups of astronomers for the local Universe are in disagreement with our accepted theoretical model of the Universe.

The expansion rate of the Universe is now starting to be measured in different ways with such high precision that actual discrepancies may possibly point towards new physics beyond our current knowledge of the Universe,” elaborates Suyu.

The targets of the study were massive galaxies positioned between Earth and very distant quasars — incredibly luminous galaxy cores. The light from the more distant quasars is bent around the huge masses of the galaxies as a result of strong gravitational lensing [3]. This creates multiple images of the background quasar, some smeared into extended arcs.

WFI2033-4723 is among the five best lensed quasars discovered to date. The foreground galaxy creates four distinct images of the distant quasar around it. [Larger images.]
Because galaxies do not create perfectly spherical distortions in the fabric of space and the lensing galaxies and quasars are not perfectly aligned, the light from the different images of the background quasar follows paths which have slightly different lengths. Since the brightness of quasars changes over time, astronomers can see the different images flicker at different times, the delays between them depending on the lengths of the paths the light has taken. These delays are directly related to the value of the Hubble constant.

Our method is the most simple and direct way to measure the Hubble constant as it only uses geometry and General Relativity, no other assumptions,” explains co-lead Frédéric Courbin from EPFL, Switzerland

Using the accurate measurements of the time delays between the multiple images, as well as computer models, has allowed the team to determine the Hubble constant to an impressively high precision: 3.8% [4].

An accurate measurement of the Hubble constant is one of the most sought-after prizes in cosmological research today,” highlights team member Vivien Bonvin, from EPFL, Switzerland. And Suyu adds: “The Hubble constant is crucial for modern astronomy as it can help to confirm or refute whether our picture of the Universe — composed of dark energy, dark matter and normal matter — is actually correct, or if we are missing something fundamental.

Notes

[1] The study used, alongside the NASA/ESA Hubble Space Telescope, the Keck Telescope, ESO’s Very Large Telescope, the Subaru Telescope, the Gemini Telescope, the Victor M. Blanco Telescope, the Canada-France-Hawaii telescope and the NASA Spitzer Space Telescope. In addition, data from the Swiss 1.2-metre Leonhard Euler Telescope and the MPG/ESO 2.2-metre telescope were used.

[2] The gravitational lensing time-delay method that the astronomers used here to achieve a value for the Hubble constant is especially important owing to its near-independence of the three components our Universe consists of: normal matter, dark matter and dark energy. Though not completely separate, the method is only weakly dependent on these.

[3] Gravitational lensing was first predicted by Albert Einstein more than a century ago. All matter in the Universe warps the space around itself, with larger masses producing a more pronounced effect. Around very massive objects, such as galaxies, light that passes close by follows this warped space, appearing to bend away from its original path by a clearly visible amount. This is known as strong gravitational lensing.

[4] The H0LiCOW team determined a value for the Hubble constant of 71.9±2.7 kilometres per second per Megaparsec. In 2016 scientists using Hubble measured a value of 73.24±1.74 kilometres per second per Megaparsec. In 2015, the ESA Planck Satellite measured the constant with the highest precision so far and obtained a value of 66.93±0.62 kilometres per second per Megaparsec.