The Space Show this week – Aug.29.2016

The guests and topics of discussion on The Space Show this week:

1. Monday, August 29, 2016: 2-3:30 PM PDT (5-6:30 PM EDT, 4-5:30 PM CDT): We welcome back KERI KUKRAL for Raw Science TV updates.

2. Tuesday, August 30, 2016: 7-8:30 PM PDT (10-11:30 PM EDT, 9-10:30 PM CDT) We welcome back DR. DORIT DONOVIEL to discuss the Vision Impairment and Intracranial Pressure issue (VIIP).

3. Thursday, Sept. 1, 2016: 9:30-10:30 AM PDT (12:30-1:30 PM EDT,): We welcome back DR. PAT HYNES to discuss the upcoming ISPCS 2016 (Int. Symposium on Personal and Commercial Spaceflight) in Las Cruces, NM.

4. Friday, Sept. 2, 2016: 9:30-11AM PDT; (12:30-2 PM EDT; 11:30 AM – 1 PM CDT) We welcome DR. GRACE WOLF-CHASE, Astronomer at the Adler Planetarium.

5. Sunday, Sept. 4, 2016: 12-1:30 PM PDT (3-4:30 PM EDT, 2-3:30 PM CDT): NO SHOW TODAY DUE TO LABOR DAY HOLIDAY WEEKEND.

See also:
* The Space Show on Vimeo – webinar videos
* The Space Show’s Blog – summaries of interviews.
* The Space Show Classroom Blog – tutorial programs

The Space Show is a project of the One Giant Leap Foundation.

Space music: STS9 releases the album “The Universe Inside”

The electronic music group STS9 has a new album out called  The Universe Inside, which was prompted by two special gold records : Stream: STS9’s new album The Universe Inside, plus read a Q&A with the band – Consequence of Sound 

They were inspired by the twin Golden Records included on the Voyager 1 and Voyager 2 space probes, on which were the sounds that defined what it meant to be human. As such, The Universe Inside “is an album about human identity and the magical truth of who we are, where we’re going, and our place in the Universe,” as a press release puts it.

Here is a video of one of the tracks on the album:

====

Videos: “Space to Ground” ISS report + Dragon returns to earth – Aug.26.2016

Here is the latest Space to Ground report from NASA on recent activities related to the ISS:

Today the SpaceX Dragon cargo spacecraft returned from the Int. Space Station, where it had been berthed since July, for a safe landing in the Pacific:  SpaceX Dragon Splashes Down with Crucial NASA Research Samples – NASA

PacificLanding

This video shows the departure of the Dragon from the ISS early this morning:

Videos: Presentations at the NASA Innovative Advanced Concepts (NIAC) symposium

The NASA Innovative Advanced Concepts (NIAC) program held its annual NIAC Symposium this week in Raleigh, North Carolina. Videos of the presentations are now available on Livestream. (See also postings for previous NIAC symposiums.)

Here is a sampling of the sessions:

  • Joshua Rovey, University of Missouri, Rolla, Experimental Demonstration and System Analysis for Plasmonic Force Propulsion;
  • Philip Lubin, University of California, Santa Barbara, Directed Energy for Interstellar Study;
  • David Kirtley, MSNW, LLC, Magnetoshell Aerocapture for Manned Missions and Planetary Deep Space Orbiters

  • Michael VanWoerkom, Exoterra Resource, LLC , NIMPH: Nano Icy Moons Propellant Harvester;
  • Stephanie Thomas, Princeton Satellite Systems, Inc., Fusion-Enabled Pluto Orbiter and Lander;
  • Jonathan Sauder, NASA Jet Propulsion Laboratory, Automaton Rover for Extreme Environments (AREE);
  • Lynn Rothschild, NASA Ames Research Center, Urban biomining meets printable electronics: end-to-end destination biological recycling and reprinting

More about Stephanie Thomas’s presentation at NIAC Pluto mission talk now available online – Princeton Satellite Systems.

  • Robert Youngquist, NASA Kennedy Space Center, Cryogenic Selective Surfaces;
  • Melville Ulmer, Northwestern University, Further Development of Aperture: A Precise Extremely Large Reflective Telescope Using Re-configurable Elements;
  • Robert Skelton, Texas A&M University, Tensegrity Approaches to In-Space Construction of a 1g Growable Habitat

  • Bruce Wiegmann, NASA Marshall Space Flight Center, Heliopause Electrostatic Rapid Transit System “HERTS”;
  • Adrian Stoica, NASA Jet Propulsion Laboratory, Trans-Formers for Lunar Extreme Environments: Ensuring Long-Term Operations in Regions of Darkness and Low Temperatures;
  • Michael Paul, Pennsylvania State University, SCEPS in Space – Non-Radioisotope Power Systems for Sunless Solar System Exploration Missions

====

ESO: Earth scale planet found in habitable zone of our nearest star, Proxima Centauri

This ESO (European Southern Observatory) report has had probably the most violated embargo of any ESO news. Great to see the full report finally made available to everyone:

Planet Found in Habitable Zone Around Nearest Star
Pale Red Dot campaign reveals Earth-mass world in orbit around Proxima Centauri

This artist’s impression shows a view of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface.
This artist’s impression shows a view of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface.

Astronomers using ESO telescopes and other facilities have found clear evidence of a planet orbiting the closest star to Earth, Proxima Centauri. The long-sought world, designated Proxima b, orbits its cool red parent star every 11 days and has a temperature suitable for liquid water to exist on its surface. This rocky world is a little more massive than the Earth and is the closest exoplanet to us — and it may also be the closest possible abode for life outside the Solar System. A paper describing this milestone finding will be published in the journal Nature on 25 August 2016.

Just over four light-years from the Solar System lies a red dwarf star that has been named Proxima Centauri as it is the closest star to Earth apart from the Sun. This cool star in the constellation of Centaurus is too faint to be seen with the unaided eye and lies near to the much brighter pair of stars known as Alpha Centauri AB.

This picture combines a view of the southern skies over the ESO 3.6-metre telescope at the La Silla Observatory in Chile with images of the stars Proxima Centauri (lower-right) and the double star Alpha Centauri AB (lower-left) from the NASA/ESA Hubble Space Telescope. Proxima Centauri is the closest star to the Solar System and is orbited by the planet Proxima b, which was discovered using the HARPS instrument on the ESO 3.6-metre telescope.
This picture combines a view of the southern skies over the ESO 3.6-metre telescope at the La Silla Observatory in Chile with images of the stars Proxima Centauri (lower-right) and the double star Alpha Centauri AB (lower-left) from the NASA/ESA Hubble Space Telescope. Proxima Centauri is the closest star to the Solar System and is orbited by the planet Proxima b, which was discovered using the HARPS instrument on the ESO 3.6-metre telescope.

During the first half of 2016 Proxima Centauri was regularly observed with the HARPS spectrograph on the ESO 3.6-metre telescope at La Silla in Chile and simultaneously monitored by other telescopes around the world [1]. This was the Pale Red Dot campaign, in which a team of astronomers led by Guillem Anglada-Escudé, from Queen Mary University of London, was looking for the tiny back and forth wobble of the star that would be caused by the gravitational pull of a possible orbiting planet [2].

This infographic compares the orbit of the planet around Proxima Centauri (Proxima b) with the same region of the Solar System. Proxima Centauri is smaller and cooler than the Sun and the planet orbits much closer to its star than Mercury. As a result it lies well within the habitable zone, where liquid water can exist on the planet’s surface.
This infographic compares the orbit of the planet around Proxima Centauri (Proxima b) with the same region of the Solar System. Proxima Centauri is smaller and cooler than the Sun and the planet orbits much closer to its star than Mercury. As a result it lies well within the habitable zone, where liquid water can exist on the planet’s surface.

As this was a topic with very wide public interest, the progress of the campaign between mid-January and April 2016 was shared publicly as it happened on the Pale Red Dot website and via social media. The reports were accompanied by numerous outreach articles written by specialists around the world.

This plot shows how the motion of Proxima Centauri towards and away from Earth is changing with time over the first half of 2016. Sometimes Proxima Centauri is approaching Earth at about 5 kilometres per hour — normal human walking pace — and at times receding at the same speed. This regular pattern of changing radial velocities repeats with a period of 11.2 days. Careful analysis of the resulting tiny Doppler shifts showed that they indicated the presence of a planet with a mass at least 1.3 times that of the Earth, orbiting about 7 million kilometres from Proxima Centauri — only 5% of the Earth-Sun distance.
This plot shows how the motion of Proxima Centauri towards and away from Earth is changing with time over the first half of 2016. Sometimes Proxima Centauri is approaching Earth at about 5 kilometres per hour — normal human walking pace — and at times receding at the same speed. This regular pattern of changing radial velocities repeats with a period of 11.2 days. Careful analysis of the resulting tiny Doppler shifts showed that they indicated the presence of a planet with a mass at least 1.3 times that of the Earth, orbiting about 7 million kilometres from Proxima Centauri — only 5% of the Earth-Sun distance.

Guillem Anglada-Escudé explains the background to this unique search:

“The first hints of a possible planet were spotted back in 2013, but the detection was not convincing. Since then we have worked hard to get further observations off the ground with help from ESO and others. The recent Pale Red Dot campaign has been about two years in the planning.”

The Pale Red Dot data, when combined with earlier observations made at ESO observatories and elsewhere, revealed the clear signal of a truly exciting result. At times Proxima Centauri is approaching Earth at about 5 kilometres per hour — normal human walking pace — and at times receding at the same speed. This regular pattern of changing radial velocities repeats with a period of 11.2 days. Careful analysis of the resulting tiny Doppler shifts showed that they indicated the presence of a planet with a mass at least 1.3 times that of the Earth, orbiting about 7 million kilometres from Proxima Centauri — only 5% of the Earth-Sun distance [3].

The relative sizes of a number of objects, including the three (known) members of Alpha Centauri triple system and some other stars for which the angular sizes have also been measured with the Very Large Telescope Interferometer (VLTI) at the ESO Paranal Observatory. The Sun and planet Jupiter are also shown for comparison.
The relative sizes of a number of objects, including the three (known) members of Alpha Centauri triple system and some other stars for which the angular sizes have also been measured with the Very Large Telescope Interferometer (VLTI) at the ESO Paranal Observatory. The Sun and planet Jupiter are also shown for comparison.

Guillem Anglada-Escudé comments on the excitement of the last few months:

“I kept checking the consistency of the signal every single day during the 60 nights of the Pale Red Dot campaign. The first 10 were promising, the first 20 were consistent with expectations, and at 30 days the result was pretty much definitive, so we started drafting the paper!”

Red dwarfs like Proxima Centauri are active stars and can vary in ways that would mimic the presence of a planet. To exclude this possibility the team also monitored the changing brightness of the star very carefully during the campaign using the ASH2 telescope at the San Pedro de Atacama Celestial Explorations Observatory in Chile and the Las Cumbres Observatory telescope network. Radial velocity data taken when the star was flaring were excluded from the final analysis.

An angular size comparison of how Proxima will appear in the sky seen from Proxima b, compared to how the Sun appears in our sky on Earth. Proxima is much smaller than the Sun, but Proxima b lies very close to its star.
An angular size comparison of how Proxima will appear in the sky seen from Proxima b, compared to how the Sun appears in our sky on Earth. Proxima is much smaller than the Sun, but Proxima b lies very close to its star.

Although Proxima b orbits much closer to its star than Mercury does to the Sun in the Solar System, the star itself is far fainter than the Sun. As a result Proxima b lies well within the habitable zone around the star and has an estimated surface temperature that would allow the presence of liquid water. Despite the temperate orbit of Proxima b, the conditions on the surface may be strongly affected by the ultraviolet and X-ray flares from the star — far more intense than the Earth experiences from the Sun [4].

Pale Red Dot was an international search for an Earth-like exoplanet around the closest star to us, Proxima Centauri. It used HARPS, attached to ESO’s 3.6-metre telescope at La Silla Observatory, as well as other telescopes around the world. It was one of the few outreach campaigns allowing the general public to witness the scientific process of data acquisition in modern observatories. The public could see how teams of astronomers with different specialities work together to collect, analyse and interpret data, which ultimately confirmed the presence of an Earth-like planet orbiting our nearest neighbour. The outreach campaign consisted of blog posts and social media updates on the Pale Red Dot Twitter account and using the hashtag #PaleRedDot. For more information visit the Pale Red Dot website: http://www.palereddot.org
Pale Red Dot was an international search for an Earth-like exoplanet around the closest star to us, Proxima Centauri. It used HARPS, attached to ESO’s 3.6-metre telescope at La Silla Observatory, as well as other telescopes around the world. It was one of the few outreach campaigns allowing the general public to witness the scientific process of data acquisition in modern observatories. The public could see how teams of astronomers with different specialities work together to collect, analyse and interpret data, which ultimately confirmed the presence of an Earth-like planet orbiting our nearest neighbour. The outreach campaign consisted of blog posts and social media updates on the Pale Red Dot Twitter account and using the hashtag #PaleRedDot. For more information visit the Pale Red Dot website: http://www.palereddot.org

Two separate papers discuss the habitability of Proxima b and its climate. They find that the existence of liquid water on the planet today cannot be ruled out and, in such case, it may be present over the surface of the planet only in the sunniest regions, either in an area in the hemisphere of the planet facing the star (synchronous rotation) or in a tropical belt (3:2 resonance rotation). Proxima b’s rotation, the strong radiation from its star and the formation history of the planet makes its climate quite different from that of the Earth, and it is unlikely that Proxima b has seasons.

This video takes the viewer from Earth to the closest star, Proxima Centauri. Here we can see the planet Proxima b, which orbits its red dwarf star every 11.2 days. This planet orbits within the habitable zone, shown in green, which means that liquid water could exist on its surface. Credit: PHL @ UPR Arecibo, ESO. Music by Lyford Rome

This discovery will be the beginning of extensive further observations, both with current instruments [5] and with the next generation of giant telescopes such as the European Extremely Large Telescope (E-ELT). Proxima b will be a prime target for the hunt for evidence of life elsewhere in the Universe. Indeed, the Alpha Centauri system is also the target of humankind’s first attempt to travel to another star system, the StarShot project.

A numerical simulation of possible surface temperatures on Proxima b performed with the Laboratoire de Météorologie Dynamique’s Planetary Global Climate Model. Here it is hypothesised that the planet possesses an Earth-like atmosphere and that it is covered by an ocean (the dashed line is the frontier between the liquid and icy oceanic surface). Two models exist for the planet’s rotation. Here the planet is in synchronous rotation (like the Moon around the Earth), and is seen as a distant observer would do during one full orbit. Another model is that it is trapped in a so-called 3:2 resonance (a natural frequency for the orbit).

Two additional papers about Proxima b’s possibility for habitability are described at proximacentauri.info. Credit: M. Turbet/I. Ribas/ESO

Guillem Anglada-Escudé concludes:

“Many exoplanets have been found and many more will be found, but searching for the closest potential Earth-analogue and succeeding has been the experience of a lifetime for all of us. Many people’s stories and efforts have converged on this discovery. The result is also a tribute to all of them. The search for life on Proxima b comes next…”

Notes

[1] Besides data from the recent Pale Red Dot campaign, the paper incorporates contributions from scientists who have been observing Proxima Centauri for many years. These include members of the original UVES/ESO M-dwarf programme (Martin Kürster and Michael Endl), and exoplanet search pioneers such as R. Paul Butler. Public observations from the HARPS/Geneva team obtained over many years were also included.

[2] The name Pale Red Dot reflects Carl Sagan’s famous reference to the Earth as a pale blue dot. As Proxima Centauri is a red dwarf star it will bathe its orbiting planet in a pale red glow.

[3] The detection reported today has been technically possible for the last 10 years. In fact, signals with smaller amplitudes have been detected previously. However, stars are not smooth balls of gas and Proxima Centauri is an active star. The robust detection of Proxima b has only been possible after reaching a detailed understanding of how the star changes on timescales from minutes to a decade, and monitoring its brightness with photometric telescopes.

[4] The actual suitability of this kind of planet to support water and Earth-like life is a matter of intense but mostly theoretical debate. Major concerns that count against the presence of life are related to the closeness of the star. For example gravitational forces probably lock the same side of the planet in perpetual daylight, while the other side is in perpetual night. The planet’s atmosphere might also slowly be evaporating or have more complex chemistry than Earth’s due to stronger ultraviolet and X-ray radiation, especially during the first billion years of the star’s life. However, none of the arguments has been proven conclusively and they are unlikely to be settled without direct observational evidence and characterisation of the planet’s atmosphere. Similar factors apply to the planets recently found around TRAPPIST-1.

[5] Some methods to study a planet’s atmosphere depend on it passing in front of its star and the starlight passing through the atmosphere on its way to Earth. Currently there is no evidence that Proxima b transits across the disc of its parent star, and the chances of this happening seem small, but further observations to check this possibility are in progress.