With OSCAAR spot exoplanets with home telescope

The software OSCAAR/OSCAAR  at GitHub allows for small telescopes to observe the transit of an exoplanet across the face of its home star:

The original OSCAAR team at the University of Maryland created OSCAAR because we wanted to observe transiting exoplanets at our small campus observatory, but our faculty and staff at the time had never used our observatory for such observations. We experimented with different observing and analysis techniques until we got our first transit light curve of HD 189733 b in the summer of 2011. We immediately wanted to share what we learned, and in the two years since then we’ve built OSCAAR for use by others like us — with access to basic observing equipment and a drive to observe transiting exoplanets, who need a place to start.

OSCAAR is continuously being enhanced and expanded by an open community of active observers and astronomers. Our contributors today span from NASA’s Goddard Space Flight Center to the University of Leiden, and observers getting started with OSCAAR reach from Vestal, New York to Athens, Greece. If you’re interested in using or contributing to OSCAAR, we look forward to welcoming you into the community! Don’t be shy to ask how you can get involved! Contributing to OSCAAR makes a great undergraduate research project, for example.

See also Spot Exoplanets With Your Home Telescope, Using Free NASA Software – Popular Science

The new software is called the Open Source differential photometry Code for Accelerating Amateur Research, or OSCAAR for short. OSCAAR measures changes in the brightness of stars. When exoplanets pass between their stars and Earth, they reduce the amount of light that reaches Earth. OSCAAR accounts for the distortion of light that occurs in the Earth’s atmosphere and for changes in light that may occur because there are clouds overhead.

Those who use OSCAAR will likely find giant gas planets orbiting close to their stars. Hot. (Literally.) That’s because such planets are large enough to cause enough change in their stars’ light for amateur equipment to detect. Also, because they’re close to their stars, their orbits are small, swift and measurable over the course of one night.