Space settlement roundup – Jan.26.2020

A sampling of recent articles, videos, and images related to human expansion into the solar system (see also previous space settlement postings):

** Mars settlement governance: Quillette offers its Mars Archives for discussions on Mars societies and how they could be governed.

Bob Zubrin refutes a silly Quillette essay about the threat of water eating Mars bugs: Mars & Human Exploration: A Rebuttal of Those Who Fear the Unknown – National Review.

** Obtaining oxygen and metals from lunar regolith: Nearly half of the chemical content of lunar dust is oxygen and most of the rest contains metals, both essential for sustainable lunar settlements. Here is a report from ESA on research into an efficient way to extract these resources from lunar regolith: ESA opens oxygen plant – making air out of moondust – ESA

ESTEC’s oxygen extraction is taking place using a method called molten salt electrolysis, involving placing regolith in a metal basket with molten calcium chloride salt to serve as an electrolyte, heated to 950°C. At this temperature the regolith remains solid.

But passing a current through it causes the oxygen to be extracted from the regolith and migrate across the salt to be collected at an anode. As a bonus this process also converts the regolith into usable metal alloys.

In fact this molten salt electrolysis method was developed by UK company Metalysis for commercial metal and alloy production. Beth’s PhD involved working at the company to study the process before recreating it at ESTEC.

On the left side of this before and after image is a pile of simulated lunar soil, or regolith; on the right is the same pile after essentially all the oxygen has been extracted from it, leaving a mixture of metal alloys. Both the oxygen and metal could be used in future by settlers on the Moon. Samples returned from the lunar surface confirm that lunar regolith is made up of 40-45% percent oxygen by weight, its single most abundant element. Credits: ESA

“At Metalysis, oxygen produced by the process is an unwanted by-product and is instead released as carbon dioxide and carbon monoxide, which means the reactors are not designed to withstand oxygen gas itself,” explains Beth. “So we had to redesign the ESTEC version to be able to have the oxygen available to measure. The lab team was very helpful in getting it installed and operating safely.”

The oxygen plant runs silently, with the oxygen produced in the process is vented into an exhaust pipe for now, but will be stored after future upgrades of the system.

“The production process leaves behind a tangle of different metals,” adds Alexandre, “and this is another useful line of research, to see what are the most useful alloys that could be produced from them, and what kind of applications could they be put to.

See the related technical paper here.

Separating lunar regolith into oxygen and metals via the The Metalysis-FFC (Fray, Farthing, Chen) process. Credits: B. Lomax et al.

** Mars caves as shelters: More about the utility for settlement of lava tubes on Mars:  Mars Lava Tubes: Emergency Shelter and Storage – Leonard David

The use of lava tubes on Mars as emergency shelters and storage has been advanced by researchers at the Antarctic Institute of Canada.

Lava tubes are formed from fast moving lava which later cools and forms roomy caves that might serve various functions for future human expeditions to the Red Planet.

Svetozar Zirnov, Daniel Polo, and Austin Mardon of the institute floated the idea at this week’s Seventh International Conference on Mars Polar Science and Exploration being held in Ushuaia, Tierra del Fuego, Argentina.

** Growing shelters on Mars with mushrooms: Could Future Homes on the Moon and Mars Be Made of Fungi? | NASA

Science fiction often imagines our future on Mars and other planets as run by machines, with metallic cities and flying cars rising above dunes of red sand. But the reality may be even stranger – and “greener.” Instead of habitats made of metal and glass, NASA is exploring technologies that could grow structures out of fungi to become our future homes in the stars, and perhaps lead to more sustainable ways of living on Earth as well.

The myco-architecture project out of NASA’s Ames Research Center in California’s Silicon Valley is prototyping technologies that could “grow” habitats on the Moon, Mars and beyond out of life – specifically, fungi and the unseen underground threads that make up the main part of the fungus, known as mycelia.

“Right now, traditional habitat designs for Mars are like a turtle — carrying our homes with us on our backs – a reliable plan, but with huge energy costs,” said Lynn Rothschild, the principal investigator on the early-stage project. “Instead, we can harness mycelia to grow these habitats ourselves when we get there.”

Ultimately, the project envisions a future where human explorers can bring a compact habitat built out of a lightweight material with dormant fungi that will last on long journeys to places like Mars. Upon arrival, by unfolding that basic structure and simply adding water, the fungi will be able to grow around that framework into a fully functional human habitat – all while being safely contained within the habitat to avoid contaminating the Martian environment.

This video from the NIAC 2018 Symposium includes a presentation about the fungi construction starting at around the 1:25:00 point:

** A COTS model for space-based solar power: A Public/Private Program to Develop Space Solar Power, Al Globus and John C. Mankins, January 2020.

We propose a public/private partnership to develop and demonstrate space solar power at a sufficiently high technical level that commercial energy providers can subsequently build operational systems for high-energy-cost environments such as remote mining facilities. The outlines of the partnership are based on the successful Commercial Orbital Transportation Services program that helped develop the SpaceX Falcon 9 launcher/Dragon capsule and the Orbital Sciences Corp. Antares launcher and Cygnus spacecraft. The Space Solar Power Demo development described here features minimal NASA oversight, milestone-driven fixed-price payouts, minimal exit criteria, substantial commercial partner funding commitments, non-traditional contracts (e.g., Space Act Agreements with NASA), commercial partner choice of energy market and energy consumer, enabling system development (e.g., space robotics), and at least two winners.

More SBSP papers from Al Globus at Free Space Settlement.

** Settling the moons of Saturn: The Space Show – Tue, 01/14/2020 – In this interview,  Janelle Wellons of NASA JPL talked about Titan and other moons of Saturn and commented on the possibility of someday putting human settlements on them:

** Weekly Space Hangout: December 18, 2019 – Anita Gale of Space Settlement Design Competitions

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today or the Weekly Space Hangout YouTube page. Tonight we welcome Anita Gale, retired Boeing Associate Technical Fellow with over 40 years of experience in Payload and Cargo Integration on crewed spacecraft, including Space Shuttle and Commercial Crew. She is currently an elected member of the National Space Society (NSS) Executive Committee. Anita co-founded Space Settlement Design Competitions which give high school students on six continents the experience of working on an aerospace industry proposal team to design and sell a space settlement in the context of “future history.” To learn more about the competitions, visit https://spaceset.org/ You can read Anita’s full bio at https://space.nss.org/anita-gale-biog…

== Amazon Ad ==

The High Frontier: An Easier Way