Space sciences roundup – Dec.5.2019

A sampling of recent articles, videos, and images from space-related science news items (find previous roundups here):


** Initial results from Parker Solar Probe published: First NASA Parker Solar Probe Results Reveal Surprising Details of Sun – NASA

The information Parker has uncovered about how the Sun constantly ejects material and energy will help scientists rewrite the models they use to understand and predict the space weather around our planet, and understand the process by which stars are created and evolve. This information will be vital to protecting astronauts and technology in space – an important part of NASA’s Artemis program, which will send the first woman and the next man to the Moon by 2024 and, eventually, on to Mars.

The four papers, now available online from the journal Nature, describe Parker’s unprecedented near-Sun observations through two record-breaking close flybys. They reveal new insights into the processes that drive the solar wind – the constant outflow of hot, ionized gas that streams outward from the Sun and fills up the solar system – and how the solar wind couples with solar rotation. Through these flybys, the mission also has examined the dust of the coronal environment, and spotted particle acceleration events so small that they are undetectable from Earth, which is nearly 93 million miles from the Sun.  

During its initial flybys, Parker studied the Sun from a distance of about 15 million miles. That is already closer to the Sun than Mercury, but the spacecraft will get even closer in the future, as it travels at more than 213,000 mph, faster than any previous spacecraft.

Solar scientists discuss  the Parker findings:

Parker imagery shows outflow of particles from the Sun:

Video: The WISPR image on NASA’s Parker Solar Probe captured imagery of the constant outflow of material from the Sun during its close approach to the Sun in April 2019. Credits: NASA/NRL/APL

See also: First Parker Solar Probe Science Data Released to Public – Parker Solar Probe – Nov.12.2019.


** Gravitational lensing by massive galaxy cluster multiples views of a galaxy behind it: Hubble Captures a Dozen Sunburst Arc Doppelgangers | ESA/Hubble

Astronomers using the NASA/ESA Hubble Space Telescope have observed a galaxy in the distant regions of the Universe which appears duplicated at least 12 times on the night sky. This unique sight, created by strong gravitational lensing, helps astronomers get a better understanding of the cosmic era known as the epoch of reionisation.

This new image from the NASA/ESA Hubble Space Telescope shows an astronomical object whose image is multiplied by the effect of strong gravitational lensing. The galaxy, nicknamed the Sunburst Arc, is almost 11 billion light-years away from Earth and has been lensed into multiple images by a massive cluster of galaxies 4.6 billion light-years away [1].

The mass of the galaxy cluster is large enough to bend and magnify the light from the more distant galaxy behind it. This process leads not only to a deformation of the light from the object, but also to a multiplication of the image of the lensed galaxy.

** Hubble telescope spots a face in a galactic collision: Hubble Captures Cosmic Face | ESA/Hubble

Although galaxy collisions are common — especially in the early universe — most are not head-on impacts like the collision that likely created this Arp-Madore system 704 million light-years from Earth. This violent encounter gives the system an arresting ring structure, but only for a short amount of time. The crash has pulled and stretched the galaxies’ discs of gas, dust, and stars outward, forming the ring of intense star formation that shapes the “nose” and “face” features of the system.

Ring galaxies are rare, and only a few hundred of them reside in our larger cosmic neighbourhood. The galaxies have to collide at just the right orientation so that they interact to create the ring, and before long they will have merged completely, hiding their messy past.

The side-by-side juxtaposition of the two central bulges of stars from the galaxies that we see here is also unusual. Since the bulges that form the “eyes” appear to be the same size, we can be sure that the two galaxies involved in the crash were of equal size. This is different from the more common collisions in which small galaxies are gobbled up by their larger neighbours.

This new image from the NASA/ESA Hubble Space Telescope captures two galaxies of equal size in a collision that appears to resemble a ghostly face. This observation was made on 19 June 2019 in visible light by the telescope’s Advanced Camera for Surveys. Residing 704 million light-years from Earth, this system is catalogued as Arp-Madore 2026-424 (AM 2026-424) in the Arp-Madore “Catalogue of Southern Peculiar Galaxies and Associations”.

** An interview with astronomer and astrophotographer Dylan O’Donnell of Australia:

Check out O’Donnell’s astrophotography gallery. And here is a talk he recently gave about imaging the Southern Sky:


** Citizen scientist spots crash site of India’s Vikram lander in images from the Lunar Reconnaissance Orbiter.

From NASA:

The Chandrayaan 2 Vikram lander was targeted for a highland smooth plain about 600 kilometers from the south pole; unfortunately the Indian Space Research Organisation (ISRO) lost contact with their lander shortly before the scheduled touchdown (Sept. 7 in India, Sept. 6 in the United States). Despite the loss, getting that close to the surface was an amazing achievement. The Lunar Reconnaissance Orbiter Camera team released the first mosaic (acquired Sept. 17) of the site on Sept. 26 and many people have downloaded the mosaic to search for signs of Vikram. Shanmuga Subramanian contacted the LRO project with a positive identification of debris.

After receiving this tip, the LROC team confirmed the identification by comparing before and after images. When the images for the first mosaic were acquired the impact point was poorly illuminated and thus not easily identifiable. Two subsequent image sequences were acquired on Oct. 14 and 15, and Nov. 11. The LROC team scoured the surrounding area in these new mosaics and found the impact site (70.8810°S, 22.7840°E, 834 m elevation) and associated debris field. The November mosaic had the best pixel scale (0.7 meter) and lighting conditions (72° incidence angle).

The debris first located by Shanmuga is about 750 meters northwest of the main crash site and was a single bright pixel identification in that first mosaic (1.3 meter pixels, 84° incidence angle). The November mosaic shows best the impact crater, ray and extensive debris field. The three largest pieces of debris are each about 2×2 pixels and cast a one pixel shadow.

“This before and after image ratio highlights changes to the surface; the impact point is near center of the image and stands out due the dark rays and bright outer halo. Note the dark streak and debris about 100 meters to the SSE of the impact point. Diagonal straight lines are uncorrected background artifacts. Credits: NASA/Goddard/Arizona State University”

** China’s Chang’e-4 lander module and Yutu-2 rover complete their 12th lunar day activities and are now shutting down for the 14 earth-day long lunar night.

China’s lunar rover Yutu-2 has driven 345.059 meters on the far side of the moon to conduct scientific exploration of the virgin territory.

Due to the complicated geological environment and the rugged and heavily cratered terrain on the far side of the moon, Chinese space engineers carefully planned the driving routes of the rover to ensure its safety.

Driving slowly but steadily, the Yutu-2 is expected to continue traveling on the moon and make more scientific discoveries, said CNSA.

** The FARSIDE project proposes to place a radio telescope array on the far side of the Moon:

FARSIDE (Farside Array for Radio Science Investigations of the Dark ages and Exoplanets) is a Probe-class concept to place a low radio frequency interferometric array on the farside of the Moon. A NASA-funded design study, focused on the instrument, a deployment rover, the lander and base station, delivered an architecture broadly consistent with the requirements for a Probe mission. This notional architecture consists of 128 dipole antennas deployed across a 10 km area by a rover, and tethered to a base station for central processing, power and data transmission to the Lunar Gateway, or an alternative relay satellite.

Asteroids & Comets

** Japan Hayabusa-2 probe returning with samples of the asteroid Ryugu. A capsule  with the samples will reach the Australian Outback in late 2020.

” Asteroid Ryugu captured with the Optical Navigation Camera – Telescopic (ONC-T) immediately after departure. Image time is November 13 10:15 JST (onboard time), 2019.
Image credit ※: JAXA, Chiba Institute of Technology, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Meiji University, University of Aizu, AIST.”

** A discussion of the metal rich asteroid Psyche, which will be visited by a NASA probe to launch in 2020:  The Prospects of Heavy Metal – Podcasts/NASA Jet Propulsion Laboratory

Asteroids, ho! Pioneering space miners dream of Psyche, the largest metal asteroid in the solar system.

** TESS space observatory watched a comet erupt as it passed in view: NASA’s Exoplanet-Hunting Mission Catches a Natural Comet Outburst – NASA

Using data from NASA’s Transiting Exoplanet Survey Satellite (TESS), astronomers at the University of Maryland (UMD), in College Park, Maryland, have captured a clear start-to-finish image sequence of an explosive emission of dust, ice and gases during the close approach of comet 46P/Wirtanen in late 2018. This is the most complete and detailed observation to date of the formation and dissipation of a naturally-occurring comet outburst. The team members reported their results in the November 22 issue of The Astrophysical Journal Letters.

“TESS spends nearly a month at a time imaging one portion of the sky. With no day or night breaks and no atmospheric interference, we have a very uniform, long-duration set of observations,” said Tony Farnham, a research scientist in the UMD Department of Astronomy and the lead author of the research paper. “As comets orbit the Sun, they can pass through TESS’ field of view. Wirtanen was a high priority for us because of its close approach in late 2018, so we decided to use its appearance in the TESS images as a test case to see what we could get out of it. We did so and were very surprised!”

“This animation shows an explosive outburst of dust, ice and gases from comet 46P/Wirtanen that occurred on September 26, 2018 and dissipated over the next 20 days. The images, from NASA’s TESS spacecraft, were taken every three hours during the first three days of the outburst. Credits: Farnham et al./NASA. View enlarged image


** A big set of Mars images of interest have been examined Bob Zimmerman at Behind the Black:

** Updates on Curiosity:

“Curiosity Left B Navigation Camera image taken on Sol 2602, December 1, 2019. Credit: NASA/JPL-Caltech” –

** Seasonal boost in the oxygen level detected by Curiosity is not understood: With Mars Methane Mystery Unsolved, Curiosity Serves Scientists a New One: Oxygen – NASA’s Mars Exploration Program

For the first time in the history of space exploration, scientists have measured the seasonal changes in the gases that fill the air directly above the surface of Gale Crater on Mars. As a result, they noticed something baffling: oxygen, the gas many Earth creatures use to breathe, behaves in a way that so far scientists cannot explain through any known chemical processes.

Within this environment, scientists found that nitrogen and argon follow a predictable seasonal pattern, waxing and waning in concentration in Gale Crater throughout the year relative to how much CO2 is in the air. They expected oxygen to do the same. But it didn’t. Instead, the amount of the gas in the air rose throughout spring and summer by as much as 30%, and then dropped back to levels predicted by known chemistry in fall. This pattern repeated each spring, though the amount of oxygen added to the atmosphere varied, implying that something was producing it and then taking it away.

“Seasonal Variations in Oxygen at Gale Crater: Graph showing oxygen concentration through Mars seasons. Image credit: Melissa Trainer/Dan Gallagher/NASA Goddard “

** A review of the discoveries of the Spirit and Opportunity rovers: A New Understanding | The Planetary Society

The findings from the Mars Exploration Rovers allowed the Mars science community to develop our strategy for Mars exploration beyond “follow the water” to the more complicated question of whether these watery environments were ever habitable. Very loosely defined, a habitable environment is one that has the 2 other essential requirements in addition to liquid water that are needed to support life as we know it: a source of carbon and a source of energy. The Mars Science Laboratory mission’s Curiosity rover, which landed on Mars in 2012, carried a larger and more complicated payload than the Mars Exploration Rovers. Curiosity is capable of finding evidence of all 3 of these requirements. In fact, it has succeeded: within its landing site at Gale crater, Curiosity found ancient river and lake deposits that preserved carbon-containing compounds as well as evidence for water chemistry that could power microbial metabolism. Today, we not only know that Mars was once wet—it was also habitable.

** China’s Mars plans:

China has performed a hover and hazard avoidance test on a model the country’s first Mars rover, while engineers ready the real spacecraft for launch toward the red planet in mid-2020.

Comprising an orbiter, lander and rover, the mission aims to become the first Chinese spacecraft to reach Mars after lifting off aboard a Long March 5 rocket — the country’s most powerful launcher — during a several week window opening in July 2020.

The mission will launch from the Wenchang space center on Hainan Island, China’s newest spaceport.


** Juno continues its orbital studies of Jupiter and continues to provide amazing images. For example, Jovian Vortex View – Mission Juno:

Juno captured this stunningly detailed look at a cyclonic storm in Jupiter’s atmosphere during its 23rd close flyby of the planet (also referred to as “perijove 23”).

Juno observed this vortex in a region of Jupiter called the “north north north north temperate belt,” or NNNNTB, one of the gas giant planet’s many persistent cloud bands. These bands are formed by the prevailing winds at different latitudes. The vortex seen here is roughly 1,200 miles (2,000 kilometers) wide.

Jupiter is composed mostly of hydrogen and helium, but some of the color in its clouds may come from plumes of sulfur and phosphorus-containing gases rising from the planet’s warmer interior.

Citizen scientist Kevin M. Gill created this image using data from the spacecraft’s JunoCam imager. It was taken on Nov. 3, 2019, at 2:08 p.m. PST (5:08 p.m. EST). At the time, the spacecraft was about 5,300 miles (8,500 kilometers) from Jupiter’s cloud tops above a latitude of about 49 degrees.


One Giant Leap:
The Impossible Mission That Flew Us to the Moon