Video: “The Mars Underground” – full documentary in HD

Here is the complete 74 minute high-definition version of the film, The Mars Underground, released in 2007. The documentary tells the multi-faceted story of  how humans might reach and settle the Red Planet and of the studies, proposals, and advocacy of those who are dedicated to making this happen. The focus is on aerospace engineer and Mars Society founder Robert Zubrin, whose 1996 book, The Case for Mars, convinced many people that an affordable, practical way to put people on Mars is feasible. Many other participants in this long struggle besides Zubrin are seen and heard as well.

ESO: Large area survey of the Milky Way completed by APEX Telescope

A new report from ESO (European Southern Observatory):

ATLASGAL Survey of Milky Way Completed

A spectacular new image of the Milky Way has been released to mark the completion of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). The APEX telescope in Chile has mapped the full area of the Galactic Plane visible from the southern hemisphere for the first time at submillimetre wavelengths — between infrared light and radio waves — and in finer detail than recent space-based surveys. The pioneering 12-metre APEX telescope allows astronomers to study the cold Universe: gas and dust only a few tens of degrees above absolute zero.

This image of the Milky Way has been released to mark the completion of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). The APEX telescope in Chile has mapped the full area of the Galactic Plane visible from the southern hemisphere for the first time at submillimetre wavelengths — between infrared light and radio waves — and in finer detail than recent space-based surveys. The APEX data, at a wavelength of 0.87 millimetres, shows up in red and the background blue image was imaged at shorter infrared wavelengths by the NASA Spitzer Space Telescope as part of the GLIMPSE survey. The fainter extended red structures come from complementary observations made by ESA's Planck satellite. Many of the most prominent objects are named and the parts of the galaxy that are shown in the three slices are indicated at the right.
This image of the Milky Way has been released to mark the completion of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). The APEX telescope in Chile has mapped the full area of the Galactic Plane visible from the southern hemisphere for the first time at submillimetre wavelengths — between infrared light and radio waves — and in finer detail than recent space-based surveys. The APEX data, at a wavelength of 0.87 millimetres, shows up in red and the background blue image was imaged at shorter infrared wavelengths by the NASA Spitzer Space Telescope as part of the GLIMPSE survey. The fainter extended red structures come from complementary observations made by ESA’s Planck satellite. Many of the most prominent objects are named and the parts of the galaxy that are shown in the three slices are indicated at the right.

APEX, the Atacama Pathfinder EXperiment telescope, is located at 5100 metres above sea level on the Chajnantor Plateau in Chile’s Atacama region. The ATLASGAL survey took advantage of the unique characteristics of the telescope to provide a detailed view of the distribution of cold dense gas along the plane of the Milky Way galaxy [1]. The new image includes most of the regions of star formation in the southern Milky Way [2].

The new ATLASGAL maps cover an area of sky 140 degrees long and 3 degrees wide, more than four times larger than the first ATLASGAL release [3]. The new maps are also of higher quality, as some areas were re-observed to obtain a more uniform data quality over the whole survey area.

This comparison shows the central regions of the Milky Way observed at different wavelengths. The  top panel shows compact sources of submillimetre radiation detected by  APEX as part of the ATLASGAL survey, combined with complementary data  from ESA’s Planck satellite, to capture more extended features. The second panel shows the same region as seen in shorter, infrared, wavelengths by the NASA Spitzer Space Telescope. The  third panel shows the same part of sky again at even shorter  wavelengths, the near-infrared, as seen by ESO’s VISTA infrared survey  telescope at the Paranal Observatory in Chile. Regions appearing as dark  dust tendrils here show up brightly in the ATLASGAL view. Finally  the bottom picture shows the more familiar view in visible light, where most of the more distant structures are hidden from view. The significance of the colours varies from image to image and they cannot be directly compared.
This comparison shows the central regions of the Milky Way observed at different wavelengths. The top panel shows compact sources of submillimetre radiation detected by APEX as part of the ATLASGAL survey, combined with complementary data from ESA’s Planck satellite, to capture more extended features. The second panel shows the same region as seen in shorter, infrared, wavelengths by the NASA Spitzer Space Telescope. The third panel shows the same part of sky again at even shorter wavelengths, the near-infrared, as seen by ESO’s VISTA infrared survey telescope at the Paranal Observatory in Chile. Regions appearing as dark dust tendrils here show up brightly in the ATLASGAL view. Finally the bottom picture shows the more familiar view in visible light, where most of the more distant structures are hidden from view. The significance of the colours varies from image to image and they cannot be directly compared.

The ATLASGAL survey is the single most successful APEX large programme with nearly 70 associated science papers already published, and its legacy will expand much further with all the reduced data products now available to the full astronomical community [4].

At the heart of APEX are its sensitive instruments. One of these, LABOCA (the LArge BOlometer Camera) was used for the ATLASGAL survey. LABOCA  measures incoming radiation by registering the tiny rise in temperature it causes on its detectors and can detect emission from the cold dark dust bands obscuring the stellar light.

This video takes a close look at a new image of the Milky Way released to mark the completion of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). The APEX telescope in Chile has mapped the full area of the Galactic Plane visible from the southern hemisphere for the first time at submillimetre wavelengths — between infrared light and radio waves — and in finer detail than recent space-based surveys.

The APEX data, at a wavelength of 0.87 millimetres, shows up in red and the background blue image was imaged at shorter infrared wavelengths by the NASA Spitzer Space Telescope as part of the GLIMPSE survey. The fainter extended red structures come from complementary observations made by ESA’s Planck satellite.

Credit: ESO/APEX/ATLASGAL consortium/NASA/GLIMPSE consortium/ESA/Planck. Music: Johan B. Monell (www.johanmonell.com)

The new release of ATLASGAL complements observations from ESA’s Planck satellite [5]. The combination of the Planck and APEX data allowed astronomers to detect emission spread over a larger area of sky and to estimate from it the fraction of dense gas in the inner Galaxy. The ATLASGAL data were also used to create a complete census of cold and massive clouds where new generations of stars are forming.

ATLASGAL provides exciting insights into where the next generation of high-mass stars and clusters form. By combining these with observations from Planck, we can now obtain a link to the large-scale structures of giant molecular clouds,” remarks Timea Csengeri from the Max Planck Institute for Radio Astronomy (MPIfR), Bonn, Germany, who led the work of combining the APEX and Planck data.

The APEX telescope recently celebrated ten years of successful research on the cold Universe. It plays an important role not only as pathfinder, but also as a complementary facility to ALMA, the Atacama Large Millimeter/submillimeter Array, which is also located  on the Chajnantor Plateau. APEX is based on a prototype antenna constructed for the ALMA project, and it has found many targets that ALMA can study in great detail.

Leonardo Testi from ESO, who is a member of the ATLASGAL team and the European Project Scientist for the ALMA project, concludes:

ATLASGAL has allowed us to have a new and transformational look at the dense interstellar medium of our own galaxy, the Milky Way. The new release of the full survey opens up the possibility to mine this marvellous dataset for new discoveries. Many teams of scientists are already using the ATLASGAL data to plan for detailed ALMA follow-up.

This video comparison shows the central regions of the Milky Way observed in four different wavelength ranges.

The first view shows compact sources of submillimetre radiation detected by APEX as part of the ATLASGAL survey, combined with complementary data from ESA’s Planck satellite, to capture more extended features.

The second view shows the same region as seen in shorter, infrared, wavelengths by NASA’s Spitzer Space Telescope as part of the GLIMPSE survey.

The third view shows the same part of sky again at even shorter wavelengths, the near-infrared, as seen by ESO’s VISTA infrared survey telescope at the Paranal Observatory in Chile. Regions appearing as dark dust tendrils here show up brightly in the ATLASGAL view.

Finally the more familiar view in visible light, when most of the more distant structures are hidden from view, is also included.

The significance of the colours varies from image to image and they cannot be directly compared.

Credit: ESO/APEX/ATLASGAL consortium/NASA/GLIMPSE consortium/ESA/Planck/VVV Survey/D. Minniti/S. Guisard. Acknowledgement: Ignacio Toledo, Martin Kornmesser. Music: Johan B. Monell (www.johanmonell.com)

Notes

[1] The map was constructed from individual APEX observations of radiation with a wavelength of 870 µm (0.87 millimetres).

[2] The northern part of the Milky Way had already been mapped by the James Clerk Maxwell Telescope (JCMT) and other telescopes, but the southern sky is particularly important as it includes the Galactic Centre, and because it is accessible for detailed follow-up observations with ALMA.

[3] The first data release covered an area of approximately 95 square degrees, a very long and narrow strip along the Galactic Plane two degrees wide and over 40 degrees long. The final maps now cover 420 square degrees, more than four times larger.

[4] The data products are available through the ESO archive.

[5] The Planck data cover the full sky, but with poor spatial resolution. ATLASGAL covers only the Galactic plane, but with high angular resolution. Combining both provides excellent spatial dynamic range.

More information

ATLASGAL is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), the Max Planck Institute for Astronomy (MPIA), ESO, and the University of Chile.

APEX is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO. Operation of APEX at Chajnantor is carried out by ESO.

ALMA is a partnership of the ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

 

New Horizons: Charon’s underground ocean stretches the surface

Checking in on the New Horizons probe to see its latest discovery:

Pluto’s ‘Hulk-like’ Moon Charon: A Possible Ancient Ocean?

Pluto’s largest moon may have gotten too big for its own skin.

Charon_SerenityChasma_Context_02182016_Melded[1]
Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Images from NASA’s New Horizons mission suggest that Charon once had a subsurface ocean that has long since frozen and expanded, pushing out on the moon’s surface and causing it to stretch and fracture on a massive scale.

The side of Charon viewed by the passing New Horizons spacecraft in July 2015 is characterized by a system of “pull apart” tectonic faults, which are expressed as ridges, scarps and valleys—the latter sometimes reaching more than 4 miles (6.5 kilometers) deep. Charon’s tectonic landscape shows that, somehow, the moon expanded in its past, and – like Bruce Banner tearing his shirt as he becomes the Incredible Hulk – Charon’s surface fractured as it stretched.

Charon’s outer layer is primarily water ice. When the moon was young this layer was warmed by the decay of radioactive elements, as well as Charon’s own internal heat of formation. Scientists say Charon could have been warm enough to cause the water ice to melt deep down, creating a subsurface ocean. But as Charon cooled over time, this ocean would have frozen and expanded (as happens when water freezes), pushing the surface outward and producing the massive chasms we see today.

This image focuses on a section of the feature informally named Serenity Chasma, part of a vast equatorial belt of chasms on Charon. In fact, this system of chasms is one of the longest seen anywhere in the solar system, running at least 1,100 miles (about 1,800 kilometers) long and reaching 4.5 miles (7.5 kilometers) deep. By comparison, the Grand Canyon is 277 miles (446 kilometers) long and just over a mile (1.6 kilometers) deep.

The lower portion of the image shows color-coded topography of the same scene. Measurements of the shape of this feature tell scientists that Charon’s water-ice layer may have been at least partially liquid in its early history, and has since refrozen.

This image was obtained by the Long-Range Reconnaissance Imager (LORRI) on New Horizons. North is up; illumination is from the top-left of the image. The image resolution is about 1,290 feet (394 meters) per pixel. The image measures 240 miles (386 kilometers) long and 110 miles (175 kilometers) wide. It was obtained at a range of approximately 48,900 miles (78,700 kilometers) from Charon, about an hour and 40 minutes before New Horizons’ closest approach to Charon on July 14, 2015.

Video: ISS crew goes ape

Astronaut Mark Kelly noticed a new visitor to the Int. Space Station:

More about the simian space explorer: Why Is A Gorilla Aboard The Space Station? – Popular Science.

The Space Show this week – Feb.22.16

The guests and topics of discussion on The Space Show this week:

1. Monday, Feb. 22, 2016: 2-3:30 PM PST (5-6:30 PM EST; 4-5:30 PM CST): We welcome PHIL SMITH of The Tauri Group.

2. Tuesday, Feb.23, 2016,7-8:30 PM PST (10-11:30 PM EST, 9-10:30 PM CST): This is the first Space Show Guest Audition show of the year. For those of you wanting to be a guest on The Space Show, give us a call..

3. Friday, Feb. 26, 2016, 2016; 9:30-11AM PST; (12:30-2 PM EST; 11:30AM – 1 PM CST. We welcome back JOHN STRICKLAND. For this program, John will be talking about what it would take to create a Mars settlement.

4. Sunday, Feb. 28, 2016: 12-1:30 PM PST (3-4:30 PM EST, 2-3:30 PM CST): OPEN LINES DISCUSSION. First time callers are welcome. All topics welcome that are space and STEM related.

See also:
* The Space Show on Vimeo – webinar videos
* The Space Show’s Blog – summaries of interviews.
* The Space Show Classroom Blog – tutorial programs

The Space Show is a project of the One Giant Leap Foundation.