Category Archives: Mars

Space sciences roundup – Dec.5.2019

A sampling of recent articles, videos, and images from space-related science news items (find previous roundups here):

Sun

** Initial results from Parker Solar Probe published: First NASA Parker Solar Probe Results Reveal Surprising Details of Sun – NASA

The information Parker has uncovered about how the Sun constantly ejects material and energy will help scientists rewrite the models they use to understand and predict the space weather around our planet, and understand the process by which stars are created and evolve. This information will be vital to protecting astronauts and technology in space – an important part of NASA’s Artemis program, which will send the first woman and the next man to the Moon by 2024 and, eventually, on to Mars.

The four papers, now available online from the journal Nature, describe Parker’s unprecedented near-Sun observations through two record-breaking close flybys. They reveal new insights into the processes that drive the solar wind – the constant outflow of hot, ionized gas that streams outward from the Sun and fills up the solar system – and how the solar wind couples with solar rotation. Through these flybys, the mission also has examined the dust of the coronal environment, and spotted particle acceleration events so small that they are undetectable from Earth, which is nearly 93 million miles from the Sun.  

During its initial flybys, Parker studied the Sun from a distance of about 15 million miles. That is already closer to the Sun than Mercury, but the spacecraft will get even closer in the future, as it travels at more than 213,000 mph, faster than any previous spacecraft.

Solar scientists discuss  the Parker findings:

Parker imagery shows outflow of particles from the Sun:

Video: The WISPR image on NASA’s Parker Solar Probe captured imagery of the constant outflow of material from the Sun during its close approach to the Sun in April 2019. Credits: NASA/NRL/APL

See also: First Parker Solar Probe Science Data Released to Public – Parker Solar Probe – Nov.12.2019.

Astronomy

** Gravitational lensing by massive galaxy cluster multiples views of a galaxy behind it: Hubble Captures a Dozen Sunburst Arc Doppelgangers | ESA/Hubble

Astronomers using the NASA/ESA Hubble Space Telescope have observed a galaxy in the distant regions of the Universe which appears duplicated at least 12 times on the night sky. This unique sight, created by strong gravitational lensing, helps astronomers get a better understanding of the cosmic era known as the epoch of reionisation.

This new image from the NASA/ESA Hubble Space Telescope shows an astronomical object whose image is multiplied by the effect of strong gravitational lensing. The galaxy, nicknamed the Sunburst Arc, is almost 11 billion light-years away from Earth and has been lensed into multiple images by a massive cluster of galaxies 4.6 billion light-years away [1].

The mass of the galaxy cluster is large enough to bend and magnify the light from the more distant galaxy behind it. This process leads not only to a deformation of the light from the object, but also to a multiplication of the image of the lensed galaxy.

** Hubble telescope spots a face in a galactic collision: Hubble Captures Cosmic Face | ESA/Hubble

Although galaxy collisions are common — especially in the early universe — most are not head-on impacts like the collision that likely created this Arp-Madore system 704 million light-years from Earth. This violent encounter gives the system an arresting ring structure, but only for a short amount of time. The crash has pulled and stretched the galaxies’ discs of gas, dust, and stars outward, forming the ring of intense star formation that shapes the “nose” and “face” features of the system.

Ring galaxies are rare, and only a few hundred of them reside in our larger cosmic neighbourhood. The galaxies have to collide at just the right orientation so that they interact to create the ring, and before long they will have merged completely, hiding their messy past.

The side-by-side juxtaposition of the two central bulges of stars from the galaxies that we see here is also unusual. Since the bulges that form the “eyes” appear to be the same size, we can be sure that the two galaxies involved in the crash were of equal size. This is different from the more common collisions in which small galaxies are gobbled up by their larger neighbours.

This new image from the NASA/ESA Hubble Space Telescope captures two galaxies of equal size in a collision that appears to resemble a ghostly face. This observation was made on 19 June 2019 in visible light by the telescope’s Advanced Camera for Surveys. Residing 704 million light-years from Earth, this system is catalogued as Arp-Madore 2026-424 (AM 2026-424) in the Arp-Madore “Catalogue of Southern Peculiar Galaxies and Associations”.

** An interview with astronomer and astrophotographer Dylan O’Donnell of Australia:

Check out O’Donnell’s astrophotography gallery. And here is a talk he recently gave about imaging the Southern Sky:

Moon

** Citizen scientist spots crash site of India’s Vikram lander in images from the Lunar Reconnaissance Orbiter.

From NASA:

The Chandrayaan 2 Vikram lander was targeted for a highland smooth plain about 600 kilometers from the south pole; unfortunately the Indian Space Research Organisation (ISRO) lost contact with their lander shortly before the scheduled touchdown (Sept. 7 in India, Sept. 6 in the United States). Despite the loss, getting that close to the surface was an amazing achievement. The Lunar Reconnaissance Orbiter Camera team released the first mosaic (acquired Sept. 17) of the site on Sept. 26 and many people have downloaded the mosaic to search for signs of Vikram. Shanmuga Subramanian contacted the LRO project with a positive identification of debris.

After receiving this tip, the LROC team confirmed the identification by comparing before and after images. When the images for the first mosaic were acquired the impact point was poorly illuminated and thus not easily identifiable. Two subsequent image sequences were acquired on Oct. 14 and 15, and Nov. 11. The LROC team scoured the surrounding area in these new mosaics and found the impact site (70.8810°S, 22.7840°E, 834 m elevation) and associated debris field. The November mosaic had the best pixel scale (0.7 meter) and lighting conditions (72° incidence angle).

The debris first located by Shanmuga is about 750 meters northwest of the main crash site and was a single bright pixel identification in that first mosaic (1.3 meter pixels, 84° incidence angle). The November mosaic shows best the impact crater, ray and extensive debris field. The three largest pieces of debris are each about 2×2 pixels and cast a one pixel shadow.

“This before and after image ratio highlights changes to the surface; the impact point is near center of the image and stands out due the dark rays and bright outer halo. Note the dark streak and debris about 100 meters to the SSE of the impact point. Diagonal straight lines are uncorrected background artifacts. Credits: NASA/Goddard/Arizona State University”

** China’s Chang’e-4 lander module and Yutu-2 rover complete their 12th lunar day activities and are now shutting down for the 14 earth-day long lunar night.

China’s lunar rover Yutu-2 has driven 345.059 meters on the far side of the moon to conduct scientific exploration of the virgin territory.

Due to the complicated geological environment and the rugged and heavily cratered terrain on the far side of the moon, Chinese space engineers carefully planned the driving routes of the rover to ensure its safety.

Driving slowly but steadily, the Yutu-2 is expected to continue traveling on the moon and make more scientific discoveries, said CNSA.

** The FARSIDE project proposes to place a radio telescope array on the far side of the Moon:

FARSIDE (Farside Array for Radio Science Investigations of the Dark ages and Exoplanets) is a Probe-class concept to place a low radio frequency interferometric array on the farside of the Moon. A NASA-funded design study, focused on the instrument, a deployment rover, the lander and base station, delivered an architecture broadly consistent with the requirements for a Probe mission. This notional architecture consists of 128 dipole antennas deployed across a 10 km area by a rover, and tethered to a base station for central processing, power and data transmission to the Lunar Gateway, or an alternative relay satellite.

Asteroids & Comets

** Japan Hayabusa-2 probe returning with samples of the asteroid Ryugu. A capsule  with the samples will reach the Australian Outback in late 2020.

” Asteroid Ryugu captured with the Optical Navigation Camera – Telescopic (ONC-T) immediately after departure. Image time is November 13 10:15 JST (onboard time), 2019.
Image credit ※: JAXA, Chiba Institute of Technology, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Meiji University, University of Aizu, AIST.”

** A discussion of the metal rich asteroid Psyche, which will be visited by a NASA probe to launch in 2020:  The Prospects of Heavy Metal – Podcasts/NASA Jet Propulsion Laboratory

Asteroids, ho! Pioneering space miners dream of Psyche, the largest metal asteroid in the solar system.

** TESS space observatory watched a comet erupt as it passed in view: NASA’s Exoplanet-Hunting Mission Catches a Natural Comet Outburst – NASA

Using data from NASA’s Transiting Exoplanet Survey Satellite (TESS), astronomers at the University of Maryland (UMD), in College Park, Maryland, have captured a clear start-to-finish image sequence of an explosive emission of dust, ice and gases during the close approach of comet 46P/Wirtanen in late 2018. This is the most complete and detailed observation to date of the formation and dissipation of a naturally-occurring comet outburst. The team members reported their results in the November 22 issue of The Astrophysical Journal Letters.

“TESS spends nearly a month at a time imaging one portion of the sky. With no day or night breaks and no atmospheric interference, we have a very uniform, long-duration set of observations,” said Tony Farnham, a research scientist in the UMD Department of Astronomy and the lead author of the research paper. “As comets orbit the Sun, they can pass through TESS’ field of view. Wirtanen was a high priority for us because of its close approach in late 2018, so we decided to use its appearance in the TESS images as a test case to see what we could get out of it. We did so and were very surprised!”

“This animation shows an explosive outburst of dust, ice and gases from comet 46P/Wirtanen that occurred on September 26, 2018 and dissipated over the next 20 days. The images, from NASA’s TESS spacecraft, were taken every three hours during the first three days of the outburst. Credits: Farnham et al./NASA. View enlarged image

Mars

** A big set of Mars images of interest have been examined Bob Zimmerman at Behind the Black:

** Updates on Curiosity:

“Curiosity Left B Navigation Camera image taken on Sol 2602, December 1, 2019. Credit: NASA/JPL-Caltech” – LeonardDavid.com

** Seasonal boost in the oxygen level detected by Curiosity is not understood: With Mars Methane Mystery Unsolved, Curiosity Serves Scientists a New One: Oxygen – NASA’s Mars Exploration Program

For the first time in the history of space exploration, scientists have measured the seasonal changes in the gases that fill the air directly above the surface of Gale Crater on Mars. As a result, they noticed something baffling: oxygen, the gas many Earth creatures use to breathe, behaves in a way that so far scientists cannot explain through any known chemical processes.

Within this environment, scientists found that nitrogen and argon follow a predictable seasonal pattern, waxing and waning in concentration in Gale Crater throughout the year relative to how much CO2 is in the air. They expected oxygen to do the same. But it didn’t. Instead, the amount of the gas in the air rose throughout spring and summer by as much as 30%, and then dropped back to levels predicted by known chemistry in fall. This pattern repeated each spring, though the amount of oxygen added to the atmosphere varied, implying that something was producing it and then taking it away.

“Seasonal Variations in Oxygen at Gale Crater: Graph showing oxygen concentration through Mars seasons. Image credit: Melissa Trainer/Dan Gallagher/NASA Goddard “

** A review of the discoveries of the Spirit and Opportunity rovers: A New Understanding | The Planetary Society

The findings from the Mars Exploration Rovers allowed the Mars science community to develop our strategy for Mars exploration beyond “follow the water” to the more complicated question of whether these watery environments were ever habitable. Very loosely defined, a habitable environment is one that has the 2 other essential requirements in addition to liquid water that are needed to support life as we know it: a source of carbon and a source of energy. The Mars Science Laboratory mission’s Curiosity rover, which landed on Mars in 2012, carried a larger and more complicated payload than the Mars Exploration Rovers. Curiosity is capable of finding evidence of all 3 of these requirements. In fact, it has succeeded: within its landing site at Gale crater, Curiosity found ancient river and lake deposits that preserved carbon-containing compounds as well as evidence for water chemistry that could power microbial metabolism. Today, we not only know that Mars was once wet—it was also habitable.

** China’s Mars plans:

China has performed a hover and hazard avoidance test on a model the country’s first Mars rover, while engineers ready the real spacecraft for launch toward the red planet in mid-2020.

Comprising an orbiter, lander and rover, the mission aims to become the first Chinese spacecraft to reach Mars after lifting off aboard a Long March 5 rocket — the country’s most powerful launcher — during a several week window opening in July 2020.

The mission will launch from the Wenchang space center on Hainan Island, China’s newest spaceport.

Jupiter

** Juno continues its orbital studies of Jupiter and continues to provide amazing images. For example, Jovian Vortex View – Mission Juno:

Juno captured this stunningly detailed look at a cyclonic storm in Jupiter’s atmosphere during its 23rd close flyby of the planet (also referred to as “perijove 23”).

Juno observed this vortex in a region of Jupiter called the “north north north north temperate belt,” or NNNNTB, one of the gas giant planet’s many persistent cloud bands. These bands are formed by the prevailing winds at different latitudes. The vortex seen here is roughly 1,200 miles (2,000 kilometers) wide.

Jupiter is composed mostly of hydrogen and helium, but some of the color in its clouds may come from plumes of sulfur and phosphorus-containing gases rising from the planet’s warmer interior.

Citizen scientist Kevin M. Gill created this image using data from the spacecraft’s JunoCam imager. It was taken on Nov. 3, 2019, at 2:08 p.m. PST (5:08 p.m. EST). At the time, the spacecraft was about 5,300 miles (8,500 kilometers) from Jupiter’s cloud tops above a latitude of about 49 degrees.

====

One Giant Leap:
The Impossible Mission That Flew Us to the Moon

Space sciences roundup – Oct.18.2019

A sampling of recent articles, videos, and images from space-related science news items (find previous roundups here):

Astronomy

** A better view of an interstellar comet 2I/Borisov: Hubble Observes New Interstellar Visitor | ESA/Hubble

On 12 October 2019, the NASA/ESA Hubble Space Telescope provided astronomers with their best look yet at an interstellar visitor — Comet 2I/Borisov — which is believed to have arrived here from another planetary system elsewhere in our galaxy.

This observation is the sharpest  view ever of the interstellar comet. Hubble reveals a central concentration of dust around the solid icy nucleus.

Comet 2I/Borisov is only the second such interstellar object known to have passed through our Solar System. In 2017, the first identified interstellar visitor, an object dubbed ‘Oumuamua, swung within 38 million kilometres of the Sun before racing out of the Solar System. 

“Whereas ‘Oumuamua looked like a bare rock, Borisov is really active, more like a normal comet. It’s a puzzle why these two are so different,” explained David Jewitt of UCLA, leader of the Hubble team who observed the comet. 

** The Space Show – Tue, 10/15/2019 –  Dr. Alan Hale discussed “multiple astronomy, telescope and exoplanet subjects. Also Hale-Bopp and other comets. Alan’s new Ice and Stone 2020 educational outreach project.”

** The Milky Way steals gasses from unidentified neighbors:  Milky Way Raids Intergalactic ‘Bank Accounts,’ Hubble Study Finds | NASA

Our Milky Way is a frugal galaxy. Supernovas and violent stellar winds blow gas out of the galactic disk, but that gas falls back onto the galaxy to form new generations of stars. In an ambitious effort to conduct a full accounting of this recycling process, astronomers were surprised to find a surplus of incoming gas.

“We expected to find the Milky Way’s books balanced, with an equilibrium of gas inflow and outflow, but 10 years of Hubble ultraviolet data has shown there is more coming in than going out,” said astronomer Andrew Fox of the Space Telescope Science Institute, Baltimore, Maryland, lead author of the study to be published in The Astrophysical Journal.

Fox said that, for now, the source of the excess inflowing gas remains a mystery.

Milky Way galaxy's gas recycling
“This illustration envisions the Milky Way galaxy’s gas recycling above and below its stellar disk. Hubble observes the invisible gas clouds rising and falling with its sensitive Cosmic Origins Spectrograph (COS) instrument. The spectroscopic signature of the light from background quasars shining through the clouds gives information about their motion. Quasar light is redshifted in clouds shooting up and away from the galactic plane, while quasar light passing through gas falling back down appears blueshifted. This differentiation allows Hubble to conduct an accurate audit of the outflowing and inflowing gas in the Milky Way’s busy halo — revealing an unexpected and so-far unexplained surplus of inflowing gas. Credits: NASA, ESA and D. Player (STScI)”

The Moon

** Both young and old craters at lunar south pole have water:

The majority of the reported ice deposits are found within large craters formed about 3.1 billion years or longer ago, the study found. Since the ice can’t be any older than the crater, that puts an upper bound on the age of the ice. Just because the crater is old doesn’t mean that the ice within it is also that old too, the researchers say, but in this case there’s reason to believe the ice is indeed old. The deposits have a patchy distribution across crater floors, which suggests that the ice has been battered by micrometeorite impacts and other debris over a long period of time.

If those reported ice deposits are indeed ancient, that could have significant implications in terms of exploration and potential resource utilization, the researchers say.

“There have been models of bombardment through time showing that ice starts to concentrate with depth,” Deutsch said. “So if you have a surface layer that’s old, you’d expect more underneath.”

While the majority of ice was in the ancient craters, the researchers also found evidence for ice in smaller craters that, judging by their sharp, well-defined features, appear to be quite fresh. That suggests that some of the deposits on the south pole got there relatively recently.

“That was a surprise,” Deutsch said. “There hadn’t really been any observations of ice in younger cold traps before.”

** Chandrayaan-2 lunar orbiter begins producing science data: India’s Chandrayaan-2 Moon Probe Just Beamed Back Its 1st Lunar Science | Space.com

The Chandrayaan-2 mission launched in July and was designed to tackle a host of questions about the moon, with a particularly sharp eye to the water ice the spacecraft’s predecessor spotted at the south pole. The current orbiter carries eight different instruments — and Indian scientists are already poring over some of the mission’s very first science data.

The orbiter carries two cameras, both of which have been hard at work. The Terrain Mapping Camera began surveying the moon as soon as Chandrayaan-2 arrived in orbit. Now, the Indian Space Research Organisation (ISRO), which runs the mission, has also released images taken by a second instrument, the Orbiter High Resolution Camera.

Chandrayaan2 Orbiter High Resolution Camera
First images released from the Orbiter High Resolution Camera on the Chandrayaan-2 lunar orbiter. Credits: ISRO

More on Chandrayaan-2 at

The Sun

** The latest on the lack of sunspots: Sunspot update Sept 2019:The blankest Sun in decades – Behind The Black. The latest from Bob Zimmerman on the spotless sun:

With the release yesterday by NOAA of its September update of its graph showing the long term sunspot activity of the Sun, we find ourselves in what might be the longest stretch of sunspot inactivity in decades, part of what might become the most inactive solar minimum in centuries.

In the last four months the Sun has produced practically no sunspots. There were two in June, two in July, and one in August. The September graph, posted below with additional annotations by me to give it context, shows that the past month was as weak as August, with only one sunspot again.

Sunspot vs time in months
A plot of the number of sunspots versus time in months. Credits: Bob Zimmerman

Mars

** More signs of abundant ice on Mars: Ice! Ice! Everywhere on Mars ice! | Behind The Black.  Bob Zimmerman reports on further examples of “exposed ice in a number scarp cliff faces found in the high-mid-latitudes of Mars.

These scarps have so far been found in the highest latitudes of those two glacial bands, which might also explain why they appear more solid with the appearance of only the beginning of degradation. The buried glaciers found in the lower latitudes always look more degraded. As Dundas notes,

We expect that ice at lower latitudes will be less stable because the temperatures are warmer, so on average (over millions of years) at lower latitudes there will be less frequent deposition and more sublimation, so this fits together.

One striking conclusion that we can begin to draw from all this recent research is that ice is likely far more prevalent close to the Martian surface then previously believed. Not only will it be reachable by colonists by simply drilling down to an underground ice table, from 30 degrees latitude and higher there will be numerous places where it will be either close to the surface, or exposed and accessible.

In this image from the Mars Reconnaissance Orbiter (MRO), the blue streak along the edge of a scarf at Milankovic Crater in the northern hemisphere of Mars indicates water ice.  Credits: Bob Zimmerman

** And more Mars surface imagery analysis from Bob Zimmerman at Behind The Black:

** Progress with the Insight lander’s Mole digger: Mars InSight’s ‘Mole’ Is Moving Again | NASA

NASA’s InSight spacecraft has used its robotic arm to help its heat probe, known as “the mole,” dig nearly 2 centimeters (3/4 of an inch) over the past week. While modest, the movement is significant: Designed to dig as much as 16 feet (5 meters) underground to gauge the heat escaping from the planet’s interior, the mole has only managed to partially bury itself since it started hammering in February 2019.

The recent movement is the result of a new strategy, arrived at after extensive testing on Earth, which found that unexpectedly strong soil is holding up the mole’s progress. The mole needs friction from surrounding soil in order to move: Without it, recoil from its self-hammering action will cause it to simply bounce in place. Pressing the scoop on InSight’s robotic arm against the mole, a new technique called “pinning,” appears to provide the probe with the friction it needs to continue digging.

Since Oct. 8, 2019, the mole has hammered 220 times over three separate occasions. Images sent down from the spacecraft’s cameras have shown the mole gradually progressing into the ground. It will take more time — and hammering — for the team to see how far the mole can go.

Insight Mole digs again with help
“‘Pinning’ Helps the Mole Move: This GIF shows NASA InSight’s heat probe, or “mole,” digging about a centimeter (half an inch) below the surface last week. Using a technique called “pinning,” InSight recently pressed the scoop on its robotic arm against the self-hammering mole in order to help it dig. Credit: NASA/JPL-Caltech.”

** Curiosity is staying busy:

Curiosity Mars Rover: Wheel Scuff at Culbin Sands – Leonard David

NASA’s Curiosity Mars rover is now performing Sol 2558 tasks.

The rover has made a wheel scuff at “Culbin Sands,” reports Fred Calef, a planetary geologist at NASA’s Jet Propulsion Laboratory.

Curiosity purposely ran over a megaripple (fine grained sandy ripple with a coarser pebble coating), Calef notes, to create a “scuff” which churned up and bisected the feature to observe any layering or material within.

Curiosity Front Hazard Avoidance-Camera-Left-B-Sol-2557-October-16-2019
Wheel scuff mark made by Curiosity wheel scuff at “Culbin Sands as seen by the Front Hazard Avoidance Camera on-Sol-2557, October-16-2019. Credits: Leonard David

Curiosity Mars Rover: Last Views of Drill Sample, Sand Dancing – Leonard David

Reports Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory, the rover is taking its last views of the Glen Etive 2 drill sample. A recent plan had the robot cleaning out the remaining sample within the drill and doing contact science analysis on the dumped sample.

Both the Chemistry and Camera (ChemCam) and Mastcam will be taking a look at “Penicuik,” a pebble target, and “Monach Isles,” a potential small meteorite. Also planned is a standard environmental observation suite: a Mastcam crater rim extinction and tau, and a Navcam supra-horizon movie.

====

Galaxy Girls: 50 Amazing Stories of Women in Space.

Space sciences roundup – Oct.4.2019

A sampling of recent articles, videos, and images from space-related science news items (find previous roundups here):

Astronomy

** Enigmatic radio burst illuminates a galaxy’s tranquil ​halo | ESO

Astronomers using ESO’s Very Large Telescope have for the first time observed that a fast radio burst passed through a galactic halo. Lasting less than a millisecond, this enigmatic blast of cosmic radio waves came through almost undisturbed, suggesting that the halo has surprisingly low density and weak magnetic field. This new technique could be used to explore the elusive halos of other galaxies.

** Hubble Reveals Latest Portrait of Saturn | ESA/Hubble

The NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 observed Saturn on 20 June 2019 as the planet made its closest approach to Earth this year, at approximately 1.36 billion kilometres away.

Since the Hubble Space Telescope was launched, its goal has been to study not only distant astronomical objects, but also the planets within our Solar System. Hubble’s high-resolution images of our planetary neighbours can only be surpassed by pictures taken from spacecraft that actually visit these bodies. However, Hubble has one advantage over space probes; it can look at these objects periodically and observe them over much longer periods than any passing probe could.

 Saturn as seen by Hubble Space Telescope’s Wide Field Camera
Saturn as seen by Hubble Space Telescope’s Wide Field Camera.

** A Cosmic Pretzel | ESO

Astronomers using ALMA have obtained an extremely high-resolution image showing two disks in which young stars are growing, fed by a complex pretzel-shaped network of filaments of gas and dust. Observing this remarkable phenomenon sheds new light on the earliest phases of the lives of stars and helps astronomers determine the conditions in which binary stars are born.

The two baby stars were found in the [BHB2007] 11 system – the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the clouds of interstellar dust called the Pipe nebula. Previous observations of this binary system showed the outer structure. Now, thanks to the high resolution of the Atacama Large Millimeter/submillimeter Array (ALMA) and an international team of astronomers led by scientists from the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, we can see the inner structure of this object. 

The Atacama Large Millimeter/submillimeter Array (ALMA) captured this unprecedented image of two circumstellar disks, in which baby stars are growing, feeding with material from their surrounding birth disk. The complex network of dust structures distributed in spiral shapes remind of the loops of a pretzel. These observations shed new light on the earliest phases of the lives of stars and help astronomers determine the conditions in which binary stars are born.

Cosmology

**  If the universe is only 14 billion years old, how can it be 92 billion light years wide? – The light of the most distant stars and galaxies comes from a time not long after the Big Bang. So why didn’t that light pass us back then when we were all “close” together? Here is the explanation:

The size and age of the universe seem to not agree with one another. Astronomers have determined that the universe is nearly 14 billion years old and yet its diameter is 92 billion light years across. How can both of those numbers possibly be true? In this video, Fermilab’s Dr. Don Lincoln tells you how.

Exoplanets

** Hubble Finds Water Vapor on Habitable-Zone Exoplanet for the First Time | ESA/Hubble

With data from the NASA/ESA Hubble Space Telescope, water vapour has been detected in the atmosphere of a super-Earth within the habitable zone by University College London (UCL) researchers in a world first. K2-18b, which is eight times the mass of Earth, is now the only planet orbiting a star outside the Solar System, or exoplanet, known to have both water and temperatures that could support life.

The discovery, published today in Nature Astronomy, is the first successful atmospheric detection of an exoplanet orbiting in its star’s habitable zone, at a distance where water can exist in liquid form.

Asteroids & Comets

** Europe and US teaming up for asteroid deflection – ESA – NASA  will launch the DART (Double Asteroid Redirection Test)  spacecraft in late 2021 to the near-Earth binary asteroid Didymos where it will smack into the smaller of the two objects in Sept. 2022. The goal is to test whether an asteroid on track to impact earth could be diverted from its path. DART will be accompanied by the Italian CubeSat LICIACube (Light Italian CubeSat for Imaging of Asteroids), which will record the impact event .

Another European contribution is the Hera spacecraft, which will launch in 2024. The Hera spacecraft

will perform a close-up survey of the post-impact asteroid, acquiring measurements such as the asteroid’s mass and detailed crater shape. Hera will also deploy a pair of CubeSats for close-up asteroid surveys and the very first radar probe of an asteroid.

The results returned by Hera would allow researchers to better model the efficiency of the collision, to turn this grand-scale experiment into a technique which could be repeated as needed in the event of a real threat.

The combined DART and HERA projects fall under the Asteroid Impact & Deflection Assessment (AIDA) mission.

Astrophysicist and Queen guitarist Brian May describes the HERA mission.

** Visitor from Interstellar SpaceSETI Institute.

Planetary Astronomer Michael Busch and Senior Astronomer Seth Shostak discuss a recent visit from Comet Borisov, C/2019 Q4.

Mars

** NASA’s InSight ‘Hears’ Peculiar Sounds on Mars

NASA’s InSight lander placed a seismometer on the Martian surface to study marsquakes. While it’s found many, it has also detected other kinds of seismic signals, including some produced by the spacecraft itself. That includes wind gusts, InSight’s robotic arm moving around and “dinks and donks,” friction caused by parts inside the seismometer moving against each other as the temperature changes. Put on your headphones and you can hear sonifications of this seismic “noise” recorded on March 6, 2019, the 98th Martian day, or sol, of the mission. Around 2 p.m. local Mars time, the spacecraft’s arm was moving and snapping pictures with its cameras, surveying InSight’s “workspace.” This audio would be too faint for the human ear to heart it on Mars. It’s been sped up by 10 times and processed so you can hear the kinds of signals InSight sends back for its scientists to study.

** NASA InSight’s Robotic Arm Helps Out its Mole on Mars

NASA’s InSight lander on Mars is trying to use its robotic arm to get the mission’s heat flow probe, or mole, digging again. InSight team engineer Ashitey Trebbi-Ollennu, based at NASA’s Jet Propulsion Laboratory in Pasadena, California, explains what has been attempted and the game plan for the coming weeks. The next tactic they’ll try will be “pinning” the mole against the hole it’s in. The German Aerospace Center (DLR) built the mole. It is designed to dig under the Martian surface to measure heat flowing out of the planet. Scientists want this data to learn how Mars and other rocky planets form.

** A recent Curiosity update from Leonard David: Curiosity Mars Rover: “Dumping Dirt on its Back”

NASA’s Curiosity Mars rover has just initiated Sol 2543 duties.

Reports Roger Wiens, Geochemist at Los Alamos National Laboratory in New Mexico: “Curiosity has been at this same location for all of August and September, which included a number of days of waiting for Mars to pass behind the Sun (‘conjunction’), drilling two holes, and processing the samples.”

Curiosity Chemistry and Camera RMI (Remote Micro-Imaging) photo taken on Sol 2541, September 29, 2019. Credit: NASA/JPL-Caltech/LANL

** A selection of Bob Zimmerman‘s analyses of interesting features on the surface of Mars:

Changes in the sand dunes in the Hellas Basin region on Mars in 8 years. Images credit: MRO/HiRISE, NASA JPL/Univ. Arizona. Cropped and annotated by Bob Zimmerman

Webcasts:

** How Do Astronomers Define Latitude & Longitude on Other Planets – Scott Manley:

t took centuries for the people on Earth to decide on a common meridian to measure longitude from, but other planets also need everyone to agree about the origins of their mapping systems. In the case of the terrestrial planets a single bright spot was chosen in the early stages of exploration, and as maps improved the exact location is defined with increasing accuracy. For tidally locked moons the meridian is defined based on orientation relative to the parent body, but even then there’s a lot of room for improvement as data improves. Finally some bodies are just not suited to spherical coordinated, because they’re not particularly spherical.

** Weekly Space Hangout: September 25, 2019 – Seth Lockman & Aaron Lockman: The Astronomy Brothers – YouTube

** All your astronomy questions answered | Space InterviewTMRO.tv

Jared and Tony Darnell from Deep Astronomy lost track of time answering a bunch of community questions ranging from why James Webb Space Telescope is being intentionally launched out of focus, what’s the *next* telescope after JWST gets launched (FINALLY) to why Uranus and Neptune deserve their own dedicated space missions.

====

Fire in the Sky:
Cosmic Collisions, Killer Asteroids, and
the Race to Defend Earth

NASA opens contest to name next Mars rover

NASA has opened Name the Rover Contest for the Mars 2020 mission, which is set to launch in July of next year.  Here is the announcement from NASA:

NASA Invites Students to Name Next Mars Rover

Red rover, red rover, send a name for Mars 2020 right over! NASA is recruiting help from students nationwide to find a name for its next Mars rover mission.

Starting Tuesday, K-12 students in U.S. public, private and home schools can enter the Mars 2020 Name the Rover essay contest. One grand prize winner will name the rover and be invited to see the spacecraft launch in July 2020 from Cape Canaveral Air Force Station in Florida.

The Name the Rover contest is part of NASA’s efforts to engage students in the STEM enterprise behind Mars exploration and inspire interest in science, technology, engineering and mathematics.

“This naming contest is a wonderful opportunity for our nation’s youth to get involved with NASA’s Moon to Mars missions,” said NASA Administrator Jim Bridenstine. “It is an exciting way to engage with a rover that will likely serve as the first leg of a Mars Sample return campaign, collecting and caching core samples from the Martian surface for scientists here on Earth to study for the first time.”

The Mars 2020 rover is a 2,300-pound robotic scientist that will search for signs of past microbial life, characterize the planet’s climate and geology, collect samples for future return to Earth, and pave the way for human exploration of the Red Planet.

“Our Mars 2020 rover has fully taken shape over the past several months, as the project team installed various components onto the chassis: the computer brain and electronics; wheels and mobility system; robotic arm; remote sensing mast; the seven science instruments; and finally, the sample caching system,” said George Tahu, Mars 2020 program executive. “All that’s missing is a great name!”

To enter the contest, students must submit by Nov. 1 their proposed rover name and a short essay, no more than 150 words, explaining why their proposed name should be chosen. The essays will be divided into three groups, by grade level – K-4, 5-8, and 9-12 – and judged on the appropriateness, significance and originality of their proposed name, and the originality and quality of their essay, and/or finalist interview presentation.

Fifty-two semifinalists will be selected per group, each representing their respective state or U.S. territory. Three finalists then will be selected from each group to advance to the final round.

As part of the final selection process, the public will have an opportunity to vote online on the nine finalists in January 2020. NASA plans to announce the selected name on Feb. 18, 2020 – exactly one year before the rover will land on the surface of Mars.

For complete contest and prize details, visit: https://mars.nasa.gov/mars2020/participate/name-the-rover/

The naming contest partnership is part of a Space Act Agreement between NASA, Battelle of Columbus, Ohio, and Future Engineers of Burbank, California, in educational and public outreach efforts.

Name the Rover Contest

Register to be a Judge

NASA is seeking volunteers to help judge the thousands of contest entries anticipated to pour in from around the country. U.S. residents over 18 years old who are interested in offering approximately five hours of their time to review submissions should register to be a judge at: https://www.futureengineers.org/registration/judge/nametherover

Rover Update

With all major elements onboard and initial functional checks complete, Mars 2020’s Assembly, Test, and Launch Operations team is preparing the rover and its sky crane descent stage for the next big test: simulating the vibration dynamics of launch and the thermal environment the rover will experience on the surface of Mars.

NASA’s Jet Propulsion Laboratory in Pasadena, California, manages rover development for the agency. The Launch Services Program at NASA’s Kennedy Space Center in Florida is responsible for launch management.

For more about NASA’s Moon to Mars plans, visit: https://www.nasa.gov/topics/moon-to-mars

====

The Case for Space:
How the Revolution in Spaceflight Opens Up
a Future of Limitless Possibility

Space sciences roundup – June.26.2019

A sampling of recent articles, videos, and images from space-related science news items:

Asteroids:

** NASA’s OSIRIS-REx probe gets up close to asteroid Bennu : OSIRIS-REx Breaks Another Orbit Record | NASA

On June 12, NASA’s OSIRIS-REx spacecraft performed another significant navigation maneuver—breaking its own world record for the closest orbit of a planetary body by a spacecraft.

The maneuver began the mission’s new phase, known as Orbital B, and placed the spacecraft in an orbit 680 meters (2,231 feet) above the surface of asteroid Bennu. The previous record—also set by the OSIRIS-REx spacecraft—was approximately 1.3 kilometers (0.8 miles) above the surface.

Upon arrival at Bennu, the team observed particles ejecting into space from the asteroid’s surface. To better understand why this is occurring, the first two weeks of Orbital B will be devoted to observing these events by taking frequent images of the asteroid’s horizon. For the remaining five weeks, the spacecraft will map the entire asteroid using most of its onboard science instruments: the OSIRIS-REx Laser Altimeter (OLA) will produce a full terrain map; PolyCam will form a high-resolution, global image mosaic; and the OSIRIS-REx Thermal Emission Spectrometer (OTES) and the REgolith X-ray Imaging Spectrometer (REXIS) will produce global maps in the infrared and X-ray bands. All of these measurements are essential for selecting the best sample collection site on Bennu’s surface.

Data from these surface studies will be used to find the optimum spot to set down and take a sample to take back to Earth.

The OSIRIS-REx spacecraft is on a seven-year journey to study the asteroid Bennu and return a sample from its surface to Earth. This sample of a primitive asteroid will help scientists understand the formation of the Solar System over 4.5 billion years ago. Sample collection is scheduled for summer of 2020, and the spacecraft will deliver the sample to Earth in September 2023.

An artist's view of OSIRIS-REx investigating asteroid Bennu
“On Jun. 12, 2019, NASA’s OSIRIS-REx spacecraft went into orbit around asteroid Bennu for a second time — breaking its own record for the closest orbit of a planetary body by any spacecraft.” Artwork credits: University of Arizona

** Japan’s Hayabusa2 probe may touch down on asteroid Ryugu again: Approach to the 2nd touchdown – Part 1: observations near the touchdown point – JAXA Hayabusa2 project

Our first touchdown took place this year on February 22. Then as a new challenge for the Hayabusa2 Project, we succeeded in creating an artificial crater using the Small Carry-on Impactor (SCI) on April 5. The last big operation left at asteroid Ryugu is the collection of subsurface material exposed with the creation of the artificial crater. In order to collect this material, we need a second touchdown for which the project has been steadily preparing. At this point, it has not yet been decided whether or not to go ahead with a second touchdown, but here we will introduce our preparations in the “Approach to the second touchdown”.

After the operation to form the artificial crater, the spacecraft descended a total of four times above or near the crater site. These descent operations allowed us to obtain detailed data of the region near the artificial crater. In addition, we succeeded in dropping a target marker in the area close to the artificial crater on May 30. Combined, these operations mean that the situation around the artificial crater is now well understood.

The rocky surface, however, makes it difficult to find a safe spot to set down.

As you can see in [the figure below], asteroid Ryugu is covered with boulders. If we go for a second touchdown, we need to aim for a point close to the target marker which has no obstacles. The project is currently examining this area in detail.

Image of Ryugu surface
“Image taken on June 13, 2019 during the operation PPTD-TM1B. This is a composite of 28 images taken at 7 second intervals starting from 10:58 JST (upper left) to 11:01 (lower right) using the Optical Navigation Camera – Telescopic (ONC-T). The image altitude is about 52m at the start and 108m at the end. The white point in the upper-left center is the target marker. You can see that detailed images have been acquired continuously from the target marker to the edge of the artificial crater, located in the lower-right of the image. (Image credit ※: JAXA, Chiba Institute of Technology, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Meiji University, University of Aizu, AIST.) “

The Sun:

** Lunar regolith reveals secrets of the early sun: Moon Samples Help Scientists Study Ancient Sun | NASA

Saxena incorporated the mathematical relationship between a star’s rotation rate and its flare activity. This insight was derived by scientists who studied the activity of thousands of stars discovered by NASA’s Kepler space telescope: The faster a star spins, they found, the more violent its ejections. “As you learn about other stars and planets, especially stars like our Sun, you start to get a bigger picture of how the Sun evolved over time,” Saxena said.  

Using sophisticated computer models, Saxena, Killen and colleagues think they may have finally solved both mysteries. Their computer simulations, which they described on May 3 in the The Astrophysical Journal Letters, show that the early Sun rotated slower than 50% of baby stars. According to their estimates, within its first billion years, the Sun took at least 9 to 10 days to complete one rotation.  

They determined this by simulating the evolution of our solar system under a slow, medium, and then a fast-rotating star. And they found that just one version — the slow-rotating star — was able to blast the right amount of charged particles into the Moon’s surface to knock enough sodium and potassium into space over time to leave the amounts we see in Moon rocks today.   

“Space weather was probably one of the major influences for how all the planets of the solar system evolved,” Saxena said, “so any study of habitability of planets needs to consider it.” 

Jupiter:

**  More wonderful views of Jupiter created by citizen scientists from Juno’s raw imagery: Tumultuous Clouds of Jupiter | Mission Juno/Kevin M. Gill

This stunning compilation image of Jupiter’s stormy northern hemisphere was captured by NASA’s Juno spacecraft as it performed a close pass of the gas giant planet. Some bright-white clouds can be seen popping up to high altitudes on the right side of Jupiter’s disk. (The Juno team frequently refers to clouds like these as “pop-up” clouds in image captions.)

Juno took the four images used to produce this color-enhanced view on May 29, 2019, between 12:52 a.m. PDT (3:52 a.m. EDT) and 1:03 a.m. PDT (4:03 a.m. EDT), as the spacecraft performed its 20th science pass of Jupiter. At the time the images were taken, the spacecraft was between 11,600 miles (18,600 kilometers) and 5,400 miles (8,600 kilometers) above Jupiter’s cloud tops, above a northern latitude spanning from about 59 to 34 degrees.

Citizen scientist Kevin M. Gill created this image using data from the spacecraft’s JunoCam imager.

Tumultuous Clouds of Jupiter
“Tumultuous Clouds of Jupiter” – Credits NASA/JPL-Caltech/SwRI/MSSS with image processing by Kevin M. Gill.

Gill also made this overflight of Jupiter’s Great Red Spot:

And Gerald Eichstädt made this terrific time-lapsed tour of Jupiter: Juno’s Perijove-20 Jupiter Flyby, Reconstructed in 125-Fold Time-Lapse – Credit: NASA / JPL / SwRI / MSSS / SPICE / Gerald Eichstädt ©

On May 29, 2019, NASA’s Juno probe successfully performed her Perijove-20 Jupiter flyby. The movie is a reconstruction of the 2 hours and 30 minutes between 2019-05-29T07:20:00.000 and 2019-05-29T09:50:00.000 in 125-fold time-lapse. It is based on 32 of the JunoCam images taken, and on spacecraft trajectory data provided via SPICE kernel files.

In steps of five real-time seconds, one still images of the movie has been rendered from at least one suitable raw image. This resulted in short scenes, usually of a few seconds. Playing with 25 images per second results in 125-fold time-lapse. Resulting overlapping scenes have been blended using the ffmpeg tool. In natural colors, Jupiter looks pretty pale. Therefore, the still images are approximately illumination-adusted, i.e. almost flattened, and consecutively gamma-stretched to the 4th power of radiometric values, in order to enhance contrast and color.

Mars:

** Curiosity detects a curious burst in methane levels: Curiosity Detects Unusually High Methane Levels – NASA JPL

On June 23rd, the Curiosity team reported that during the previous week the

… Mars rover found a surprising result: the largest amount of methane ever measured during the mission – about 21 parts per billion units by volume (ppbv). One ppbv means that if you take a volume of air on Mars, one billionth of the volume of air is methane.

The finding came from the rover’s Sample Analysis at Mars (SAM) tunable laser spectrometer. It’s exciting because microbial life is an important source of methane on Earth, but methane can also be created through interactions between rocks and water.

Curiosity doesn’t have instruments that can definitively say what the source of the methane is, or even if it’s coming from a local source within Gale Crater or elsewhere on the planet.

On June 24th, the team reported results from a

… follow-on methane experiment this past weekend. The results came down early Monday morning: The methane levels have sharply decreased, with less than 1 part per billion by volume detected. That’s a value close to the background levels Curiosity sees all the time.

The finding suggests last week’s methane detection – the largest amount of the gas Curiosity has ever found – was one of the transient methane plumes that have been observed in the past. While scientists have observed the background levels rise and fall seasonally, they haven’t found a pattern in the occurrence of these transient plumes.

“The methane mystery continues,” said Ashwin Vasavada, Curiosity’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re more motivated than ever to keep measuring and put our brains together to figure out how methane behaves in the Martian atmosphere.”

** Curiosity’s travels via Leonard David:

  • Curiosity Mars Rover: Eying Teal Ridge Outcrop – June.25.2019

    “Curiosity is still perched on top of Teal Ridge to investigate a fascinating outcrop that caps the ridge,” reports Kristen Bennett, a planetary geologist at the USGS in Flagstaff, Arizona.Scientists have been characterizing the ridge-capping material, but also devoting time to use the Sample Analysis at Mars (SAM) Instrument Suite to look for methane.

MAHLI-Sol-2444-June-22-2019
“Curiosity Mars Hand Lens Imager (MAHLI) image produced on Sol 2444, June 22, 2019. Credit: NASA/JPL-Caltech/MSSS.” Larger image
  • Curiosity Mars Rover: Ridge Work – June.20.2019

    NASA’s Curiosity Mars rover is now carrying out Sol 2442 duties, parked on Teal Ridge, in the midst of an extended contact science campaign.At this ridge location, new imagery from the robot shows crossbedding in a bedrock layer, as well as a contact between the bedrock outcrop and a rubbly layer below.

Curiosity Navcam - Sol-2442-June-20-2019
A view from Teal Ridge taken by Curiosity’s Navcam – Sol-2442-June-20-2019
“Curiosity Navcam Left B image taken on Sol 2439, June 17, 2019. Credit: NASA/JPL-Caltech.” Larger image.

** Bob Zimmerman reports on interesting Mars images taken from orbit:

  • Strange Martian gullies – June.21.2019 – Bob finds the gullies in the image “Older Gullies and Channels” below fascinating –

    … because they appear to be some form of erosion drainage coming down both sides of a high ridge near the northern rim of this large apparently unnamed crater in the southern cratered highlands of Mars, to the west of Hellas Basin.On Earth my immediate explanation for this erosion would be a major monsoon-like storm, such as we get here in the southwest and call “gully-washers.” When a lot of water is quickly dumped onto a hill where there is not of vegetation to help bind the soil together, the water will quickly carve out gullies that looks almost exactly like these.

Older Gullies and Channels in Slopes of Softened Large Crater
Older Gullies and Channels in Slopes of Softened Large Crater – HiRISE

On Mars, who knows? It certainly wasn’t a monsoon thunderstorm that did this. And being in the Martian southern highlands it is unlikely it was from an ocean of any kind. Were there lakes here? Past research has found places where lakes might have existed on Mars, but these places are far north in the transitional zone into the northern lowlands.

  • Mass wasting on Mars – June.19.2019Mass wasting is a term that geologists use to describe a specific kind of avalanche, where the material moves down slope suddenly in a single mass.The image [below], taken from the image archive of the high resolution camera on Mars Reconnaissance Orbiter (MRO) and cropped and reduced in resolution to post here, shows a dramatic example of this kind of avalanche. You can see two separate avalanches, each of which moved a significant blob of material down slope into the center of the crater floor.

  • Wind and/or water erosion on the Martian northern lowlands – June.17.2019The picture [below], cropped and reduced in resolution to show here, was taken by the high resolution camera on Mars Reconnaissance Orbiter on April 21, 2019, and shows the erosion process produced by either wind or water as it flowed from the east to the west past one small mesa.It is almost certain that the erosion here was caused by wind, but as we don’t know when this happened, it could also be very old, and have occurred when this terrain was at the bottom of the theorized intermittent ocean that some believe once existed on these northern lowlands. The location itself, near the resurgences for Marineris Valles and the other drainages coming down from the giant volcanoes, might add weight to a water cause, except that the erosional flow went from east to west, and the resurgences were coming from the opposite direction, the west and the south.
Topographic Interactions in Vastitas Borealis
Topographic Interactions in Vastitas Borealis. HiRISE at U. of Arizona.

====

I Was a Teenage Space Reporter:
From Apollo 11 to Our Future in Space