Category Archives: Space Science

Video: Air-launched Pegasus rocket orbits eight satellites for hurricane studies

This morning Orbital ATK successfully air-launched a Pegasus XL rocket from a L-1011 aircraft. The rocket deployed eight small satellites for the CYGNSS (Cyclone Global Navigation Satellite System) mission, which will study tropical storms by using the way GPS signals are affected by the atmosphere. (See the CYGNSS Science page on the site of the Univ. of Michigan team that is in charge of the project.)

Cassini captures great views of Saturn’s hexagonal north pole

Some recent images of Saturn’s hexagon shaped cloud patter on its north pole:

Cassini Beams Back First Images from New Orbit

This collage of images from NASA’s Cassini spacecraft shows Saturn’s northern hemisphere and rings as viewed with four different spectral filters. Each filter is sensitive to different wavelengths of light and reveals clouds and hazes at different altitudes. Credits: NASA/JPL-Caltech/Space Science Institute. Full image and caption

NASA’s Cassini spacecraft has sent to Earth its first views of Saturn’s atmosphere since beginning the latest phase of its mission. The new images show scenes from high above Saturn’s northern hemisphere, including the planet’s intriguing hexagon-shaped jet stream.

Cassini began its new mission phase, called its Ring-Grazing Orbits, on Nov. 30 [see earlier posting here]. Each of these weeklong orbits — 20 in all — carries the spacecraft high above Saturn’s northern hemisphere before sending it skimming past the outer edges of the planet’s main rings.

Cassini’s imaging cameras acquired these latest views on Dec. 2 and 3, about two days before the first ring-grazing approach to the planet. Future passes will include images from near closest approach, including some of the closest-ever views of the outer rings and small moons that orbit there.

“This is it, the beginning of the end of our historic exploration of Saturn. Let these images — and those to come — remind you that we’ve lived a bold and daring adventure around the solar system’s most magnificent planet,”

said Carolyn Porco, Cassini imaging team lead at Space Science Institute, Boulder, Colorado.

The next pass by the rings’ outer edges is planned for Dec. 11. The ring-grazing orbits will continue until April 22, when the last close flyby of Saturn’s moon Titan will once again reshape Cassini’s flight path. With that encounter, Cassini will begin its Grand Finale, leaping over the rings and making the first of 22 plunges through the 1,500-mile-wide (2,400-kilometer) gap between Saturn and its innermost ring on April 26.

This view from NASA’s Cassini spacecraft was obtained about two days before its first close pass by the outer edges of Saturn’s main rings during its penultimate mission phase. Credits: NASA/JPL-Caltech/Space Science Institute
Full image and caption

On Sept. 15, the mission’s planned conclusion will be a final dive into Saturn’s atmosphere. During its plunge, Cassini will transmit data about the atmosphere’s composition until its signal is lost.

Launched in 1997, Cassini has been touring the Saturn system since arriving in 2004 for an up-close study of the planet, its rings and moons. Cassini has made numerous dramatic discoveries, including a global ocean with indications of hydrothermal activity within the moon Enceladus, and liquid methane seas on another moon, Titan.

For details about Cassini’s ring-grazing orbits, visit: saturn.jpl.nasa.gov/news/2966/ring-grazing-orbits

The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. JPL designed, developed and assembled the Cassini orbiter.

More information about Cassini is at:

===

A repeat showing of the nice video depicting the ring-grazing orbits that Cassini will fly during its final year:

 

====

Video: Planetary Post with Robert Picardo – A reading of Sagan’s “Pale Blue Dot”

The latest Planetary Post with Robert Picardo: The Planetary Post – Carl Sagan’s Pale Blue Dot | The Planetary Society

A reading of Carl Sagan’s Pale Blue Dot by Star Trek’s Robert Picardo, who also serves as a member of The Planetary Society Board of Directors and is the host of our monthly email newsletter, The Planetary Post.

 

Cassini takes a great shot of Mimas, Saturn and the rings

The Cassini spacecraft takes a wonderful image of the Saturn, its rings, and the small moon Mimas:

Tiny Mimas, Huge Rings

Saturn’s icy moon Mimas is dwarfed by the planet’s enormous rings.

pia20509-10411
The moon Mimas is dwarfed by Saturn and its beautiful rings, which cast stripped shadows on the gas giant. (Larger image.)

Because Mimas (near lower left) appears tiny by comparison, it might seem that the rings would be far more massive, but this is not the case. Scientists think the rings are no more than a few times as massive as Mimas, or perhaps just a fraction of Mimas’ mass. Cassini is expected to determine the mass of Saturn’s rings to within just a few hundredths of Mimas’ mass as the mission winds down by tracking radio signals from the spacecraft as it flies close to the rings.

The rings, which are made of small, icy particles spread over a vast area, are extremely thin – generally no thicker than the height of a house. Thus, despite their giant proportions, the rings contain a surprisingly small amount of material.

Mimas is 246 miles (396 kilometers) wide.

This view looks toward the sunlit side of the rings from about 6 degrees above the ring plane. The image was taken in red light with the Cassini spacecraft wide-angle camera on July 21, 2016.

The view was obtained at a distance of approximately 564,000 miles (907,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 31 degrees. Image scale is 34 miles (54 kilometers) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

For more information about the Cassini-Huygens mission visit saturn.jpl.nasa.gov and www.nasa.gov/cassini. The Cassini imaging team homepage is at ciclops.org.

Credit: NASA/JPL-Caltech/Space Science Institute

Radar study finds Mars ice deposit with water comparable to Lake Superior

A huge underground deposit of water has been detected on Mars:

Mars Ice Deposit Holds as Much Water as Lake Superior

pia21136_hires1
This vertically exaggerated view shows scalloped depressions in a part of Mars where such textures prompted researchers to check for buried ice, using ground-penetrating radar aboard NASA’s Mars Reconnaissance Orbiter. Image Credit: NASA/JPL-Caltech/Univ. of Arizona › Full image and caption

Frozen beneath a region of cracked and pitted plains on Mars lies about as much water as what’s in Lake Superior, largest of the Great Lakes, researchers using NASA’s Mars Reconnaissance Orbiter have determined.

Scientists examined part of Mars’ Utopia Planitia region, in the mid-northern latitudes, with the orbiter’s ground-penetrating Shallow Radar (SHARAD) instrument. Analyses of data from more than 600 overhead passes with the onboard radar instrument reveal a deposit more extensive in area than the state of New Mexico. The deposit ranges in thickness from about 260 feet (80 meters) to about 560 feet (170 meters), with a composition that’s 50 to 85 percent water ice, mixed with dust or larger rocky particles.


Fast Facts:

› Water ice makes up half or more of an underground layer in a large region of Mars about halfway from the equator to the north pole.

› The amount of water in this deposit is about as much as in Lake Superior. It was assessed using a radar aboard a NASA spacecraft orbiting Mars.

› This research advances understanding about Mars’ history and identifies a possible resource for future astronauts.


At the latitude of this deposit — about halfway from the equator to the pole — water ice cannot persist on the surface of Mars today. It sublimes into water vapor in the planet’s thin, dry atmosphere. The Utopia deposit is shielded from the atmosphere by a soil covering estimated to be about 3 to 33 feet (1 to 10 meters) thick.

“This deposit probably formed as snowfall accumulating into an ice sheet mixed with dust during a period in Mars history when the planet’s axis was more tilted than it is today,”

said Cassie Stuurman of the Institute for Geophysics at the University of Texas, Austin. She is the lead author of a report in the journal Geophysical Research Letters.

This vertically exaggerated view shows scalloped depressions in a part of Mars where such textures prompted researchers to check for buried ice, using ground-penetrating radar aboard NASA's Mars Reconnaissance Orbiter. Image Credit: NASA/JPL-Caltech/Univ. of Arizona
This vertically exaggerated view shows scalloped depressions in a part of Mars where such textures prompted researchers to check for buried ice, using ground-penetrating radar aboard NASA’s Mars Reconnaissance Orbiter. Image Credit: NASA/JPL-Caltech/Univ. of Arizona › Full image and caption

Mars today, with an axial tilt of 25 degrees, accumulates large amounts of water ice at the poles. In cycles lasting about 120,000 years, the tilt varies to nearly twice that much, heating the poles and driving ice to middle latitudes. Climate modeling and previous findings of buried, mid-latitude ice indicate that frozen water accumulates away from the poles during high-tilt periods.

Martian Water as a Future Resource

The name Utopia Planitia translates loosely as the “plains of paradise.” The newly surveyed ice deposit spans latitudes from 39 to 49 degrees within the plains. It represents less than one percent of all known water ice on Mars, but it more than doubles the volume of thick, buried ice sheets known in the northern plains. Ice deposits close to the surface are being considered as a resource for astronauts.

“This deposit is probably more accessible than most water ice on Mars, because it is at a relatively low latitude and it lies in a flat, smooth area where landing a spacecraft would be easier than at some of the other areas with buried ice,”

said Jack Holt of the University of Texas, a co-author of the Utopia paper who is a SHARAD co-investigator and has previously used radar to study Martian ice in buried glaciers and the polar caps.

The Utopian water is all frozen now. If there were a melted layer — which would be significant for the possibility of life on Mars — it would have been evident in the radar scans. However, some melting can’t be ruled out during different climate conditions when the planet’s axis was more tilted.

“Where water ice has been around for a long time, we just don’t know whether there could have been enough liquid water at some point for supporting microbial life,” Holt said.

Mars Ice Deposit Holds as Much Water as Lake Superior Subsurface Water-Ice Deposit in Utopia Planitia, MarsScalloped Terrain Led to Finding of Buried Ice on MarsRadargrams Indicating Ice-Rich Subsurface Deposit These two images show Shallow Radar (SHARAD) instrument data from two tracks in a part of Mars' Utopia Planitia region where the orbiting, ground-penetrating radar on NASA's Mars Reconnaissance Orbiter detected subsurface deposits rich in water ice. Image Credit: NASA/JPL-Caltech/Univ. of Rome/ASI/PSI
Mars Ice Deposit Holds as Much Water as Lake Superior Subsurface Water-Ice Deposit in Utopia Planitia, MarsScalloped Terrain Led to Finding of Buried Ice on MarsRadargrams Indicating Ice-Rich Subsurface Deposit These two images show Shallow Radar (SHARAD) instrument data from two tracks in a part of Mars’ Utopia Planitia region where the orbiting, ground-penetrating radar on NASA’s Mars Reconnaissance Orbiter detected subsurface deposits rich in water ice. Image Credit: NASA/JPL-Caltech/Univ. of Rome/ASI/PSI › Full image and caption

Utopia Planitia is a basin with a diameter of about 2,050 miles (3,300 kilometers), resulting from a major impact early in Mars’ history and subsequently filled. NASA sent the Viking 2 Lander to a site near the center of Utopia in 1976. The portion examined by Stuurman and colleagues lies southwest of that long-silent lander.

Use of the Italian-built SHARAD instrument for examining part of Utopia Planitia was prompted by Gordon Osinski at Western University in Ontario, Canada, a co-author of the study. For many years, he and other researchers have been intrigued by ground-surface patterns there such as polygonal cracking and rimless pits called scalloped depressions — “like someone took an ice-cream scoop to the ground,” said Stuurman, who started this project while a student at Western.

Clue from Canada

In the Canadian Arctic, similar landforms are indicative of ground ice, Osinski noted,

“but there was an outstanding question as to whether any ice was still present at the Martian Utopia or whether it had been lost over the millions of years since the formation of these polygons and depressions.”

The large volume of ice detected with SHARAD advances understanding about Mars’ history and identifies a possible resource for future use.

“It’s important to expand what we know about the distribution and quantity of Martian water,” said Mars Reconnaissance Orbiter Deputy Project Scientist Leslie Tamppari, of NASA’s Jet Propulsion Laboratory, Pasadena, California. “We know early Mars had enough liquid water on the surface for rivers and lakes. Where did it go? Much of it left the planet from the top of the atmosphere. Other missions have been examining that process. But there’s also a large quantity that is now underground ice, and we want to keep learning more about that.”

Joe Levy of the University of Texas, a co-author of the new study, said,

“The ice deposits in Utopia Planitia aren’t just an exploration resource, they’re also one of the most accessible climate change records on Mars. We don’t understand fully why ice has built up in some areas of the Martian surface and not in others. Sampling and using this ice with a future mission could help keep astronauts alive, while also helping them unlock the secrets of Martian ice ages.”

SHARAD is one of six science instruments on the Mars Reconnaissance Orbiter, which began its prime science phase 10 years ago this month. The mission’s longevity is enabling studies of features and active processes all around Mars, from subsurface to upper atmosphere. The Italian Space Agency provided the SHARAD instrument and Sapienza University of Rome leads its operations. The Planetary Science Institute, based in Tucson, Arizona, leads U.S. involvement in SHARAD. JPL, a division of Caltech in Pasadena, manages the orbiter mission for NASA’s Science Mission Directorate in Washington. Lockheed Martin Space Systems of Denver built the spacecraft and supports its operations.

====